
Anale. Seria Informatică. Vol. XI fasc. 1 – 2013
Annals. Computer Science Series. 11th Tome 1st Fasc. – 2013

92

HHIIGGHH PPEERRFFOORRMMAANNCCEE MMOONNTTEE CCAARRLLOO BBAASSEEDD

OOPPTTIIOONN PPRRIICCIINNGG OONN EENNTTEERRPPRRIISSEE GGRRIIDDSS

QQuussaayy FF.. HHaassssaann

Faculty of Computers and Information Systems, Mansoura University, Mansoura, Egypt

ABSTRACT: The Monte Carlo method is being increas-

ingly used in various fields like mathematical finance,

engineering, physical sciences, and bioinformatics to

solve problems where using the deterministic method is

infeasible. The Monte Carlo simulation is a numerical

computational technique which uses thousands or even

millions of random values to solve complex problems,

causing this technique to be slow and computer-intensive

when being used for options pricing. Therefore, financial

firms are usually forced to deploy powerful hardware

means such as supercomputers and computer clusters in

order to perform the needed simulations. The ability to

link the traditional computers and servers available at

organizations to form a grid that acts as a supercomputer

can enable both scientists and professionals to run their

simulations without spending extra costs. This paper pro-

poses and implements an application for the Monte Carlo

methods for options pricing using the enterprise grids on

the Windows environment. The paper also provides a

comparison between the performance of the proposed

framework and the traditional model.

KEYWORDS: Financial Analysis, Monte Carlo Simula-

tion, Option Pricing, Grid Computing, Enterprise Grids,

Alchemi, .NET Framework

1 Introduction

The Monte Carlo method is a numerical computa-

tional technique that is used to solve problems by

means of repeated random samplings [And86]. This

technique is being widely used to solve problems

that are infeasible with the deterministic algorithm.

The Monte Carlo method enables scientists to simu-

late systems and scenarios using thousands or even

millions of randomly generated inputs.

The Monte Carlo simulations are used in finance,

mathematical finance and financial engineering to

value the financial assets with various sources of

uncertainty or when no practical close form solu-

tions are available. Phelim P. Boyle was the first

scientist to apply the Monte Carlo methods in fi-

nance in order to calculate the value of the European

options [Boy77].

In general, the accuracy of the Monte Carlo results is

affected by the law of large numbers where the conver-

gence equals and n is the number of random simula-

tions. In other words, halving the error in the generated

results requires increasing the number of sampled val-

ues by a factor of four. This indicates that simulating

one scenario using the Monte Carlo method at an ac-

ceptable accuracy rate might increase the processing

time dramatically. This drawback restricts the use of

the Monte Carlo simulations on powerful computer

clusters and expensive supercomputers [TBG08].

However, one of the good characteristics of the Monte

Carlo method is parallelism, where multiple paths can

be computed simultaneously.

Grid computing is a form of parallelization that is

being increasingly used in different fields to com-

plete slow and computationally-intensive tasks in

short times. For simulations in general and for the

Monte Carlo simulations in specific, the goal of

cutting the simulation time can be efficiently

achieved by linking a (large) pool of computers to

calculate independent paths concurrently. Forming

grids out of traditional desktop machines and lap-

tops (and sometimes servers and clusters) available

at the enterprises is known as Enterprise Grids or

Desktop Grids. This paper proposes a framework

that utilizes enterprise grids to speed up the Monte

Carlo simulations for European options pricing. The

remainder of this paper is organized as follows:

Section 2 gives a historical review for the related

work. Section 3 introduces the basic terms of op-

tions and option pricing. The fundamentals, defini-

tion and architecture of grid computing and enter-

prise grids are briefly discussed in section 4. In sec-

tion 5, the architecture and technical details of our

implementation for the Monte Carlo-based options

pricing on enterprise grids are presented. Experi-

mental results and evaluation of our framework are

discussed in section 6. Finally, section 7 concludes

and hints at some of the future work.

2 Related Work

Different studies were conducted to parallelize the

analysis and the calculation of financial models.

Both hardware and software-based models were

utilized to achieve this goal efficiently.

Anale. Seria Informatică. Vol. XI fasc. 1 – 2013
Annals. Computer Science Series. 11th Tome 1st Fasc. – 2013

93

For the hardware-based model, some papers dis-

cussed the use of computer clusters with off-the-

shelf accelerators to perform the Monte Carlo simu-

lations for options pricing [TBG08]. Although this

model is usually faster than the software-based par-

allelization models, most organizations cannot af-

ford it. Furthermore, such clusters are usually de-

signed and tailored to execute specific tasks making

them far more complex, less configurable, less cus-

tomizable, and less flexible in terms of the range of

the problems that they can solve.

Graphics processing units (GPUs) which are used to

accelerate the building of images and videos offer proc-

essing powers that sometimes surpass the power of

traditional CPUs. Some studies discussed options pric-

ing and Monte Carlo option pricing on GPUs including

work presented by NVIDIA Corporation [KP05].

These studies showed the substantial speedup gained

from the use of GPUs over the traditional CPUs. How-

ever, this approach is limited by the availability of

GPUs on enterprises’ computers and by the new pro-

gramming skills that are required to write GPU-based

applications. The installation of GPUs is usually lim-

ited to gaming workstations and computers used to

render 3D models and animations. Also, programming

using the GPU model is still in its early stages and most

developers find it difficult to use.

For the software parallelization model, Message

Passing Interface (MPI) was proposed as a method

where the calculation phase is subdivided into sev-

eral processes and each process is executed on a

separate processor (or a set of processor) [ABM01].

Although this approach can distribute the work

across multiple processors, it is not as flexible to the

changing conditions as grid computing. Moreover,

parallelizing the financial analysis calculations and

simulations using MPI incurs a lot of time and effort

as it requires rewriting applications, taking into con-

sideration that implementers are responsible for

writing the brokering and scheduling logic.

Some work explored the use of the Monte Carlo

method and global grids in the field of financial ser-

vices [M+07]. Global grids are different from the ap-

proach proposed in this paper in that it connects re-

sources offered by different organizations (and hosted

on different platforms) by forming different administra-

tive organizational units known as virtual organizations

(VOs) [FKT01]. Although global grids are scalable and

autonomous, they are harder and much more complex

to build as they require extensive coordination and

synchronization between different organizations,

higher security measures, and integration between the

resources that are hosted on various hardware architec-

tures/platforms and operation systems. Global grids are

also more suitable for long-running tasks where each

task may take several hours to complete.

3 The Basics of Option Pricing

This section introduces the definitions and basic

terms related to options and option pricing.

3.1 Options

An option or financial option is a contract (also

known as a security) between two parties that speci-

fies the terms of quantity, price, conditions (includ-

ing the right to buy or sell), class, and the expiration

date of the underlying asset. The underlying asset

can be a stock, currency, debt, index, bond, real

estate, commodity, and the like.

Different styles of options are available such as

Exotic, Non-vanilla, and most commonly American

and European options. The option’s style refers to

the class to which the option belongs. In general, the

date on which an option can be exercised is the most

important factor that defines the option’s style. Ex-

ercising an option means that the holder is able to

buy or sell the underlying asset, according to the

type of the option, terminating the contract between

the two parties is immediate. For example, Ameri-

can options can be exercised at any time up to their

expiration date, whereas European options can only

be exercised at their expiration date. This paper

focuses on the valuation of European options.

Before delving into the details of the options pricing and

the grid-based implementation, the readers should first

understand the basic terms of an option [***11a]:

- Spot Price: The current market price of the un-

derlying asset.

- Strike Price: The specified price on the option

contract.

- Maturity: The expiration date of the contract at

which the option can be exercised.

- Volatility: The relative change of the option

price. The volatility value is generally affected

by the market’s conditions and the option’s

supply and demand.

- Risk-free Rate: In finance, this variable refers

to the return rate an investor expects to make

from a risk-free investment over a given period

of time. This assumption is theoretical since no

investment is free of risk or financial loss and

thus, risk-free rate can be estimated by the vari-

ance in the actual return around the expected

return.

There are two main types of options [Hul11]:

1. Call Options: An option that gives its holder

the right (not an obligation) to buy the under-

lying asset by a certain date for a certain

price. If K is the strike price and ST is the

spot price, then the payoff of European call is

calculated using equation (1).

Anale. Seria Informatică. Vol. XI fasc. 1 – 2013
Annals. Computer Science Series. 11th Tome 1st Fasc. – 2013

94

(1)

2. Put Options: An option that gives its holder

the right (not an obligation) to sell the under-

lying asset by a certain date for a certain

price. The payoff European put is calculated

using equation (2).

(2)

3.2 Monte Carlo Technique for Option Pricing

As illustrated in Fig. 1, the idea behind the pricing

of financial options using the Monte Carlo method

is straightforward where the valuation process is

broken down into four simple steps [Gla03].

Fig. 1. Steps of Monte Carlo-based options pricing

In order to implement a Monte Carlo simulation, a

simulation for the geometric Brownian motion

(GBM) process for the underlying asset is needed

[Ros09]. Based on the Black-Scholes model, the

evolution of the stochastic differential model (SDE)

can be determined using equation (3) [FS73].

(3)

The change in the option price is dS; µ is the drift

rate; σ is the volatility; Wt is a standard Brownian

motion; dt is a time interval/increment at t = 0; and

the value of S(0) is S0 which represents the current

value of the option.

Based on equation (3), the solution of the SDE is

derived as illustrated in equation (4).

(4)

The risk-free interest rate (which in general is con-

tinuously compounded) is r; and W(T) is a random

variable. Based on the standard normal distribution

of W(T), equation (4) can be re-written as illustrated

in equation (5).

(5)

Z is a random variable of the standard normal distri-

bution (mean 0 and deviation 1).

To valuate an option with the Monte Carlo method,

a large number of simulations is required: a mini-

mum of 10,000 simulations is needed to price an

option with a satisfactory accuracy. This constraint

makes pricing with the Monte Carlo method slow

and computer-intensive.

As mentioned earlier, the standard error in the esti-

mated value is mainly related to the square root of

the number of simulations. Thus, quadrupling the

number of simulations will halve the error. For in-

stance, at least 40,000 simulations are needed to

double the accuracy of an option price resulting

from 10,000 simulations. Certainly, this will make

the valuation process much slower and more com-

puter-intensive. From equations (4) and (5), equa-

tions (6) and (7), which are used to calculate the

European call price and put price, can be deduced,

respectively.

(6)

(7)

The discount factor is e
-rT

; and n is the number of

random simulations.

To obtain more accurate results from the Monte

Carlo–based option pricing, the simulations can be

performed in a path-dependent manner. This form,

which will be used for the evaluation of our frame-

work, simply means that the simulation process is

divided into a set of discrete time steps where the

option price will be evaluated in each time step in

addition to the master evaluation illustrated in equa-

tions (7) and (8). If m is the number of time steps,

then equations (8) and (9) can be used for the

evaluation of the path-dependent European call

price and European put price, respectively.

Anale. Seria Informatică. Vol. XI fasc. 1 – 2013
Annals. Computer Science Series. 11th Tome 1st Fasc. – 2013

95

(8)

(9)

4 Grid Computing

Grid computing refers to the ability to combine, coordi-

nate and share different computing resources in a scal-

able and dynamic manner to obtain powerful capabilities

in order to meet the complicated needs that are hard to

cost-effectively fulfill by other means [FK04].

Supercomputers are usually utilized in cases where

enormous resources are needed to solve very com-

plex and computationally-intensive problems

quickly and efficiently. Examples of these problems

include deigning a new plane or vehicle, financial

analysis and modeling, weather forecasting, risk

analysis, urban planning, pharmaceutical engineer-

ing, film making and 3D rendering. However, most

organizations, especially small-to-medium enter-

prises (SMEs) and non-profit organizations cannot

afford such solutions. Grid computing allows or-

ganizations to have a supercomputer-like perform-

ance but at much lower costs. This goal is accom-

plished by networking these resources in a way that

allows end users to use them autonomously as if

they are all coming from a single powerful com-

puter.

As mentioned earlier, grid computing is one form of

the parallel computing models where processing

takes place concurrently on a number of nodes (also

known as hosts). These nodes can be standalone

machines, servers, clusters, supercomputers, or a

combination of any of them. The interaction be-

tween grid nodes can take different forms. A Mas-

ter/Worker parallel model is one of the commonly

followed paradigms in grid computing. As its name

denotes, this model is composed of two constituent

parts: 1) A Master which is a central node (or clus-

ter of nodes) that is responsible for scheduling and

dispatching the work units, and receiving the results;

2) Workers that work together to execute the as-

signed jobs. Grid workers can either be full time

workers solely dedicated to executing the incoming

jobs, or non-dedicated where they join the grid to

voluntarily execute the jobs only when they are idle

and then leave once they are needed to perform tra-

ditional tasks.

As illustrated in Fig. 2, a user sends a complex job

to the master node via a grid-enabled application.

This client application is responsible for breaking a

complex job into a number of smaller and simpler

sub-jobs (also known as subtasks). Then, the master

allocates workers in order to assign the queued sub-

jobs to. As illustrated in Fig. 2, a user sends a com-

plex job to the master node via a grid-enabled appli-

cation. This client application is responsible for

breaking a complex job into a number of smaller

and simpler sub-jobs (also known as subtasks).

Then, the master allocates workers in order to assign

the queued sub-jobs to. The result of every com-

pleted sub-job is then sent back to the master in

order to have it forwarded back to the client. Ac-

cording to the client application logic, it can decide

whether to use the received results “as is” or to exe-

cute some post-processing operations such as for-

matting the results or combining them into a single

output.

Windows operating system (OS) is the most promi-

nent operating system around the world. Different

versions of Widows OS are already installed on over

80% of personal computers and corporate servers

[***11b]. Thus, deploying grids on a Windows en-

vironment is reasonable and could be beneficial for

both profit and non-profit enterprises.

.NET Framework (pronounced as “dot net”) is the cut-

ting-edge development technology offered by Microsoft

for Windows environment. A number of grid technolo-

gies compatible with the .NET environment are now

available in the market. Some of these products are open-

source such as Alchemi [***11c], some are freeware

such as Utilify [***11d], and others are commercial such

as Aneka [***11e] and DigiPede [***11f].

To implement the proposed framework, Alchemi has

been used. Alchemi is a grid-enabling middleware with

a set of Application Programmable Interfaces (APIs)

developed by the GRIDS research team at Melbourne

University [L+05]. Alchemi is composed of three main

components: 1) Manager which acts as a master that

manages the whole grid. 2) Executor which acts as a

grid worker that actually process tasks. 3) Dashboard

which enables implementers to monitor the state and

utilization of the running grid(s), and the number of

running applications and executors.

Alchemi deploys a thread-like programming model

where the computational process is subdivided into

a set of smaller units that are distributed over the

available number of executors [L+05]. The manager

queues the created jobs and schedule them accord-

ing to the availability of the executors. If the number

of the queued jobs is larger than that of the free

executors, the manager assigns a number of jobs that

matches the free executors, and when one of the

assigned jobs has been completed, the manager

sends a new job to the returning executor, and so on.

Alchemi offers three events that fire according to

Anale. Seria Informatică. Vol. XI fasc. 1 – 2013
Annals. Computer Science Series. 11th Tome 1st Fasc. – 2013

96

the status of the grid jobs in order to notify the end

users (and developers): 1) “ThreadFinish” which

fires when a single grid job is successfully com-

pleted. 2) “ThreadFailed” which fires when a grid

job has failed. 3) “ApplicationFinish” which fires

when all grid jobs are executed.

The latest stable release of Alchemi is 1.0.6 which

can be downloaded from the Alchemi page on

SourceForge [***11g]. Alchemi 1.06 works fine on

Windows XP and Windows 7 and it comes with

easy installation wizards. However, a number of

difficulties have been encountered in installing and

using Alchemi on Windows Vista.

5 Implementation

This section gives the readers all the details regard-

ing the implemented framework including the archi-

tecture and the C# code written to grid-enable the

Monte Carlo simulation for European Option Pric-

ing.

5.1 Architecture

Fig 3, illustrates the graphical user interface (GUI)

of our grid-based Monte Carlo simulator. As men-

tioned, the framework has been implemented using

.NET framework and C# language as well as Al-

chemi APIs. The end user passes the connection

string information to the deployed grid including the

grid IP, port number, username and password. The

end user also passes the simulation parameters so

that the simulator can calculate the assigned tasks.

These parameters are: 1) An Excel document con-

taining the simulation parameters/variables; 2) Excel

ranges from which the valuation parameter can be

extracted; 3) the appropriate sheet; 4) and finally the

output range for the returned results. Each column in

the spreadsheet represents a specific type of variable

(such as spot, strike, etc.); whereas each row repre-

sents a set of input variables required to run one

valuation process. Thus, the granularity level of our

grid jobs is one row (or valuation task) per a job. As

will be discussed latter, job sizing is one of the most

important factors for the success of the grid-

enabling phase for the Monte Carlo simulations.

The readers should note that storing the input parame-

ters is not limited to Excel. Other means such as text

files, comma-separated values (CSVs), Extensible

Markup Language (XML) and databases can be used to

store and pass these parameters, and to save the re-

turned result sets as well. Fig. 4 illustrates a snapshot of

some of the input parameters placed in the Excel sheet

used for our Monte Carlo simulations.

Fig. 2. High level architecture of the grid computing model

Anale. Seria Informatică. Vol. XI fasc. 1 – 2013
Annals. Computer Science Series. 11th Tome 1st Fasc. – 2013

97

Fig. 3. Client application

Fig. 4. Sample input parameters

Fig. 5. Monte-Carlo based Options Pricing Frame-

work

As illustrated in Fig. 5, the architecture of our

framework is typically based on the general archi-

tecture of the enterprise grids (showed in Fig. 2).

The end user passes the valuation parameters to the

grid through the client application which in turn

creates the needed number of grid jobs. When these

jobs are received by the manager, they are queued

and scheduled for execution on the connected ex-

ecutors. After distributing the jobs to the connected

executors, the manager waits till some results are

received. When one valuation task is completed or

has failed, the end user is notified via the client ap-

plication by firing the “ThreadCompeted” event or

the “ThreadFaild” event, respectively. Developers

are able to catch the failed jobs and write a logic

that can re-submit them to the grid or process them

locally. When all jobs are completed, the client ap-

plication stores the returned call prices and put

prices into the designated column(s).

5.2 Client Code

The code of the client application is responsible for:

1) enabling the end user to feed the grid with the

input values (i.e., simulation variables); 2) creating

the simulation jobs based on the passed variables

and configuration settings. The client application

also contains the GUI elements, components and

logic. The logic that is used to read user inputs, cre-

ate the simulation jobs and submit them to the grid

is abstracted below:

Anale. Seria Informatică. Vol. XI fasc. 1 – 2013
Annals. Computer Science Series. 11th Tome 1st Fasc. – 2013

98

//Connection string to the grid

//Parameters: server name, port number, username, pass-

word

GConnection gc = new GConnection("localhost", 9000,

"user", "user");

//Creates a new grid application

GApplication App = new GApplication(gc);

App.ApplicationName = "European Option Pricing Monte

Carlo Simulation";

//Adds the module containing EuropeanOptionPricing-

Thread to the application manifest

App.Manifest.Add(new ModuleDepend-

ency(typeof(EuropeanOptionPricingThread).Module));

//Load input file (omitted for two reasons 1. each devel-

oper may use different logic; 2. to make code simpler

//Iterate through input value

EuropeanOptionPricingThread

_EuropeanOptionPricingThread = new EuropeanOption-

PricingThread(spot, strike, maturity, volatility, rate, steps,

simulations);

//Adds the created job (thread) to the list of the grid jobs.

These jobs will be distributed to the grid executors for

processing

App.Threads.Add(_EuropeanOptionPricingThread);

//Start processing on the grid

App.Start();

[C# code of the client application]

5.3 Grid Enabling Code

As illustrated below, to create grid jobs, a class that

implements the “GThread” class offered by Alchemi

must be created. “GThread” class is one of the pub-

lic classes offered by the Alchemi APIs. To imple-

ment the “GThread” class, developers must first add

a reference to the “Alchemi.Core” dynamic library

(.dll) in their code, and then add the “using Al-

chemi.Core.Owner;” directive in their implementa-

tion class. The implementation class must be marked

with the “[Serializable]” attribute otherwise runtime

errors will be fired and no jobs will be executed on

the grid.

using System;

using Alchemi.Core.Owner;

namespace OptionPricing

{

 [Serializable]

 public class EuropeanOptionPricingThread : GThread

 {

 double _spotPrice, _strike, _maurity, _volatility,

_riskFreeRate;

 int _nsteps;

 long _nsimulations;

 double[] _result;

public EuropeanOptionPricingThread(double spotPrice,

double strike, double maurity, double volatility, double

riskFreeRate, int nsteps, long nsimulations)

{

 _spotPrice = spotPrice;

 _strike = strike;

 _maurity = maurity;

 _volatility = volatility;

 _riskFreeRate = riskFreeRate;

 _nsteps = nsteps;

 _nsimulations = nsimulations;

}

//This method is responsible for executing the processing

logic on one of the grid nodes (executors)

public override void Start()

{

 //Create an instance of the class that contains the actual

Monte Carlo simulation logic for Option Pricing

 EuropeanOptionPricing _EuropeanOptionPricing =

new EuropeanOptionPricing(_spotPrice, _strike,

_maurity, _volatility, _riskFreeRate, _nsteps,

_nsimulations);

 //Call the simulation method

 _result = _EuropeanOptionPricing.Calculate();

}

}

}

[C# code of that implements the Start() method of Al-

chemi]

5.4 Calculation Code

As illustrated below, the calculation/simulation

logic is encapsulated in a method called “Calcu-

late()”. This method, in basic terms, performs the

four Monte Carlo steps illustrated in Fig. 1 and

briefly described in equations (3), (8) and (9)

[Hau06]. As illustrated, the “Calculate()” method

refers to two external methods, namely “GenerateR-

andomNumbers()” and “GetMean()”.

“GenerateRandomNumbers()” is responsible for

generating a set of random values that will be used

during the simulation process. In this work, a pseu-

dorandom number generator using the Box-Müller

transform is used [BM58].

“GetMean()” method is responsible for averaging

the values of the generated paths (i.e., payoffs).

using System;

namespace OptionPricing

{

 [Serializable]

 public class EuropeanOptionPricing

 {

 //Members

 double _spotPrice, _strike, _maurity, _volatility,

_riskFreeRate, _nsteps, _nsimulations;

 //Constructor

 public EuropeanOptionPricing(double spotPrice,

Anale. Seria Informatică. Vol. XI fasc. 1 – 2013
Annals. Computer Science Series. 11th Tome 1st Fasc. – 2013

99

double strike, double maurity, double volatility, double

riskFreeRate, double nsteps, double nsimulations)

 {

 _spotPrice = spotPrice;

 _strike = strike;

 _maurity = maurity;

 _volatility = volatility;

 _riskFreeRate = riskFreeRate;

 _nsteps = nsteps;

 _nsimulations = nsimulations;

 }

//Calculates the Call and Put prices and returns them in a

two-elements (single dimension) array

public double[] Calculate()

{

 double dt = _maurity / _nsteps;

 double vsqrdt = _volatility * Math.Pow(dt, 0.5);

 double drift = (_riskFreeRate -Math.Pow(_volatility, 2)

/ 2) * dt;

 double[] callpayoffvec;

 callpayoffvec = new double[(int)_nsimulations];

 double[] putpayoffvec;

 putpayoffvec = new double[(int)_nsimulations];

 long counter = 1;

 double[] randvec = NRandVars(_nsteps *

_nsimulations);

 for (long i = 1; i <= _nsimulations; i++)

 {

 double st = _spotPrice;

 double curtime = 0;

 for (int j = 1; j <= _nsteps; j++)

 {

 curtime = curtime + dt;

 double randvar = (double)randvec[counter];

 st = st * Math.Exp(drift + vsqrdt * randvar);

 counter = counter + 1;

 }

 callpayoffvec[i - 1] = Math.Max(st - _strike, 0.0);

 putpayoffvec[i - 1] = Math.Max(_strike - st, 0.0);}

 double callPrice = Math.Exp(-_riskFreeRate *

_maurity) * GetMean(callpayoffvec);

 double putPrice = Math.Exp(-_riskFreeRate *

_maurity) * GetMean(putpayoffvec);

 double[] returnValue = new double[] { callPrice, put-

Price };

 return returnValue;

}

//Returns an array of n normally distributed variables

using box muller transformation

public double[] NRandVars(double value)

{

 double[] randomArray = new double[(int)value + 1];

 double n2 = 0, v1 = 0, v2 = 0, tmp = 0, fac = 0;

 int counter = 0;

 n2 = Math.Floor((double)value / 2);

 counter = 0;

 Random random = new Random();

 for (long i = 1; i <= n2; i++)

 {

 do

 {

 v1 = 2 * random.NextDouble() - 1;

 v2 = 2 * random.NextDouble() - 1;

 tmp = v1 * v1 + v2 * v2;

 } while (!(tmp <= 1));

 fac = Math.Sqrt(-2 * Math.Log(tmp) / tmp);

 counter = counter + 1;

 randomArray[counter] = v1 * fac;

 counter = counter + 1;

 randomArray[counter] = v2 * fac;

 }

 if ((value > (n2 * 2)))

 {

 do

 {

 v1 = 2 * random.NextDouble() - 1;

 v2 = 2 * random.NextDouble() - 1;

 tmp = v1 * v1 + v2 * v2;

 } while (!(tmp <= 1));

 fac = Math.Sqrt(-2 * Math.Log(tmp) / tmp);

 counter = counter + 1;

 randomArray[counter] = v2 * fac;

 }

 return randomArray;

}

//Returns mean of an array

public double GetMean(double[] x)

{

 double tmpsum = 0;

 float n = x.GetUpperBound(0) - x.GetLowerBound(0)

+ 1;

 for (int i = x.GetLowerBound(0); i <=

x.GetUpperBound(0); i++)

 {

 tmpsum = tmpsum + x[i];

 }

 return tmpsum / n;

}

}

}

[C# code of the calculation class]

6 Evaluation Results

The presented framework has been evaluated on a

test-bed consisting of 2, 4, 8 and 16 laptops. The

laptops were connected through an Ethernet network

using a traditional 100mbps switch. All simulation

nodes had the same hardware specifications and

operating system, namely processor: Intel Core i5

2.3 GHz; RAM: 4 GB; and Windows 7 (64 bit). One

of the nodes was configured to play both the Man-

ager and Executor with the client application also

installed. The remaining nodes were only configured

to act as executors.

To evaluate the efficiency of the grid-based Monte

Carlo simulator, 10,000 runs (valuations) for Euro-

pean Options were simulated using different sets of

variables. Each run was simulated 100,000 times to

Anale. Seria Informatică. Vol. XI fasc. 1 – 2013
Annals. Computer Science Series. 11th Tome 1st Fasc. – 2013

100

obtain (nearly) accurate results. To further improve

the accuracy, 10 time-steps for each run were used.

This, on one hand, has notably improved the accu-

racy of the simulations, but on the other hand, it

dramatically increased the total valuation time.

As mentioned earlier, to parallelize the simulation

process of the implementation, the client application

was configured to create a single job for each valua-

tion task. Certainly, this configuration is not suitable

for all Monte Carlo simulations; implementers

should reasonably size and scope their grid jobs

according to the complexity and length of the core

valuation process. That is, creating long-running

jobs that would take several minutes or hours, or

very short jobs that would take only few millisec-

onds may negatively impact the overall performance

of the deployed grid. In the former case, the jobs

(runs) might run in a serial-like manner ignoring the

advantage of having a grid of computers, whereas in

the latter, a large number of network round trips

would be incurred, and the Manager node might be

overloaded with the incoming requests.

Before running the simulations on the deployed test-

bed, they were tested separately on a single ma-

chine. This enabled the grid-based model to be eas-

ily compared with the traditional (non-grid based)

model. Fig. 6 illustrates how the grid-based simula-

tion model enabled us to cut the total simulation

time drastically. As shown, the simulation time was

proportionally reduced with the number of installed

computers. This speedup is directly associated with

the fact that the grid computing model combines the

power of the deployed computers to calculate differ-

ent simulation paths/runs simultaneously.

Fig. 6. Simulation time on Grid vs. Single Nodes

7 Conclusion

The utilization of enterprise grids allows businesses,

organizations and educational institutions to effec-

tively run Monte Carlo simulations without the bur-

den of time, complexities or costs. This work pre-

sented a grid-enabled options’ valuation framework

based on the Monte Carlo method. The paper started

with an introduction to the Monte Carlo method. A

historical review for the related work was also pre-

sented to show how the proposed framework is dif-

ferent. The basic terms of financial options and grid

computing were also given before discussing the

proposed framework. Then, the implementation

details including the architecture, used technologies

and the C# code of the client application, Euro-

peanOptionPricing, EuropeanOptionPricingThread

class were discussed.

Results show that the speed of the grid-enabled

valuation for the European options using the Monte

Carlo method increases proportionally with the

number of connected workers. The readers might

think that the presented simulations could run in

zero or (near to zero) seconds if it is performed on a

bigger and more powerful grid. In fact, this is not

possible due to a number of factors including the

underlying network topology and speed as well as

the scheduling mechanism used by the grid middle-

ware. However, implementers are still able to easily

and efficiently obtain a supercomputer-like per-

formance with only a fraction of the cost.

References

[And86] H. L. Anderson - Metropolis: Monte

Carlo and the MANIAC. Los Alamos

Science 14 (1986) 96–108

[ABM01] A. Abdelkhalek, A. Bilas, A. Micha-

elides - Parallelization, Optimization,

and Performance Analysis of Portfolio

Choice Models. Proceedings of the 30th

International Conference on Parallel

Processing (2001)

[Boy77] P. P. Boyle - Options: A Monte Carlo

approach. Journal of Financial Eco-

nomics. Vol. 4 (1977) 323–338

[BM58] G. E. P. Box, M. E. Muller - A Note

on the Generation of Random Normal

Deviates. The Annals of Mathematical

Statistics. Vol. 29. No. 2 (1958) 610–

611

Anale. Seria Informatică. Vol. XI fasc. 1 – 2013
Annals. Computer Science Series. 11th Tome 1st Fasc. – 2013

101

[FK04] I. Foster, C. Kesselman - The Grid 2,

Second Edition: Blueprint for a New

Computing Infrastructure. Elsevier

(2004)

[FKT01] I. Foster, C. Kesselman, S. Tuecke -

The anatomy of the grid: Enabling

scalable virtual organizations, Int. J.

High Performance Computing (2001)

200–222

[FS73] B. Fischer, M. Scholes - The Pricing

of Options and Corporate Liabilities.

Journal of Political Economy. Vol. 81.

No. 3 (1973) 637-654

[Gla03] P. Glasserman - Monte Carlo Methods

in Financial Engineering (Stochastic

Modeling and Applied Probability).

Springer (2003)

[Hau06] E. G. Haug - The Complete Guide to

Option Pricing Formulas. 2nd Edition,

MsGraw-Hill (2006)

[Hul11] J. C. Hull - Options, Futures, & Other

Derivatives. 8th Edition, Pearson Col-

lege (2011)

[KP05] C. Kolb, M. Pharr - Option pricing on

the GPU, GPU Gems 2. Chapter 45

(2005)

[L+05] A. Luther, R. Buyya, R. Ranjan, S.

Venugopal - Alchemi: A .NET-Based

Enterprise Grid Computing System.

Proceedings of the 6th International

Conference on Internet Computing

(ICOMP'05), Las Vegas, USA (2005)

[M+07] R. Moreno-Vozmediano, K. Nadi-

minti, S. Venugopal, A. B. Alonso-

Conde, H. Gibbins, R. Buyya - Port-

folio and investment risk analysis on

global grids, Journal of Computer and

System Sciences, Elsevier (2007)

[Ros09] S. M. Ross - Introduction to Probabil-

ity Models. 10th Edition, Elsevier

(2009)

[TBG08] X. Tian, K. Benkrid, X. Gu - High

Performance Monte-Carlo Based Op-

tion Pricing on FPGAs. IAENG Jour-

nal Engineering Letters, Special Issue

on High Performance Reconfigurable

Systems. Vol. 16. No. 3 (2008) 434-442

[***11a] http://www.investopedia.com/ (No-

vember, 2011)

[***11b] http://www.w3schools.com/

browsers/browsers_os.asp

(November, 2011)

[***11c] http://www.cloudbus.org/~alchemi/

(November, 2011)

[***11d] http://www.utilify.com/ (November,

2011)

[***11e] http://www.manjrasoft.com/

products.html (November, 2011)

[***11f] http://www.digipede.net/ (November,

2011)

[***11g] http://sourceforge.net/projects/alchemi/

(November, 2011)

