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ABSTRACT: The Monte Carlo method is being increas-

ingly used in various fields like mathematical finance, 

engineering, physical sciences, and bioinformatics to 

solve problems where using the deterministic method is 

infeasible. The Monte Carlo simulation is a numerical 

computational technique which uses thousands or even 

millions of random values to solve complex problems, 

causing this technique to be slow and computer-intensive 

when being used for options pricing. Therefore, financial 

firms are usually forced to deploy powerful hardware 

means such as supercomputers and computer clusters in 

order to perform the needed simulations. The ability to 

link the traditional computers and servers available at 

organizations to form a grid that acts as a supercomputer 

can enable both scientists and professionals to run their 

simulations without spending extra costs. This paper pro-

poses and implements an application for the Monte Carlo 

methods for options pricing using the enterprise grids on 

the Windows environment. The paper also provides a 

comparison between the performance of the proposed 

framework and the traditional model. 

KEYWORDS: Financial Analysis, Monte Carlo Simula-

tion, Option Pricing, Grid Computing, Enterprise Grids, 
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1   Introduction 

 

The Monte Carlo method is a numerical computa-

tional technique that is used to solve problems by 

means of repeated random samplings [And86]. This 

technique is being widely used to solve problems 

that are infeasible with the deterministic algorithm. 

The Monte Carlo method enables scientists to simu-

late systems and scenarios using thousands or even 

millions of randomly generated inputs. 

The Monte Carlo simulations are used in finance, 

mathematical finance and financial engineering to 

value the financial assets with various sources of 

uncertainty or when no practical close form solu-

tions are available. Phelim P. Boyle was the first 

scientist to apply the Monte Carlo methods in fi-

nance in order to calculate the value of the European 

options [Boy77]. 

In general, the accuracy of the Monte Carlo results is 

affected by the law of large numbers where the conver-

gence equals  and n is the number of random simula-

tions. In other words, halving the error in the generated 

results requires increasing the number of sampled val-

ues by a factor of four. This indicates that simulating 

one scenario using the Monte Carlo method at an ac-

ceptable accuracy rate might increase the processing 

time dramatically. This drawback restricts the use of 

the Monte Carlo simulations on powerful computer 

clusters and expensive supercomputers [TBG08]. 

However, one of the good characteristics of the Monte 

Carlo method is parallelism, where multiple paths can 

be computed simultaneously. 

Grid computing is a form of parallelization that is 

being increasingly used in different fields to com-

plete slow and computationally-intensive tasks in 

short times. For simulations in general and for the 

Monte Carlo simulations in specific, the goal of 

cutting the simulation time can be efficiently 

achieved by linking a (large) pool of computers to 

calculate independent paths concurrently. Forming 

grids out of traditional desktop machines and lap-

tops (and sometimes servers and clusters) available 

at the enterprises is known as Enterprise Grids or 

Desktop Grids. This paper proposes a framework 

that utilizes enterprise grids to speed up the Monte 

Carlo simulations for European options pricing. The 

remainder of this paper is organized as follows: 

Section 2 gives a historical review for the related 

work. Section 3 introduces the basic terms of op-

tions and option pricing. The fundamentals, defini-

tion and architecture of grid computing and enter-

prise grids are briefly discussed in section 4. In sec-

tion 5, the architecture and technical details of our 

implementation for the Monte Carlo-based options 

pricing on enterprise grids are presented. Experi-

mental results and evaluation of our framework are 

discussed in section 6. Finally, section 7 concludes 

and hints at some of the future work. 

 

2   Related Work 

 

Different studies were conducted to parallelize the 

analysis and the calculation of financial models. 

Both hardware and software-based models were 

utilized to achieve this goal efficiently. 
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For the hardware-based model, some papers dis-

cussed the use of computer clusters with off-the-

shelf accelerators to perform the Monte Carlo simu-

lations for options pricing [TBG08]. Although this 

model is usually faster than the software-based par-

allelization models, most organizations cannot af-

ford it. Furthermore, such clusters are usually de-

signed and tailored to execute specific tasks making 

them far more complex, less configurable, less cus-

tomizable, and less flexible in terms of the range of 

the problems that they can solve. 

Graphics processing units (GPUs) which are used to 

accelerate the building of images and videos offer proc-

essing powers that sometimes surpass the power of 

traditional CPUs. Some studies discussed options pric-

ing and Monte Carlo option pricing on GPUs including 

work presented by NVIDIA Corporation [KP05]. 

These studies showed the substantial speedup gained 

from the use of GPUs over the traditional CPUs. How-

ever, this approach is limited by the availability of 

GPUs on enterprises’ computers and by the new pro-

gramming skills that are required to write GPU-based 

applications. The installation of GPUs is usually lim-

ited to gaming workstations and computers used to 

render 3D models and animations. Also, programming 

using the GPU model is still in its early stages and most 

developers find it difficult to use. 

For the software parallelization model, Message 

Passing Interface (MPI) was proposed as a method 

where the calculation phase is subdivided into sev-

eral processes and each process is executed on a 

separate processor (or a set of processor) [ABM01]. 

Although this approach can distribute the work 

across multiple processors, it is not as flexible to the 

changing conditions as grid computing. Moreover, 

parallelizing the financial analysis calculations and 

simulations using MPI incurs a lot of time and effort 

as it requires rewriting applications, taking into con-

sideration that implementers are responsible for 

writing the brokering and scheduling logic. 

Some work explored the use of the Monte Carlo 

method and global grids in the field of financial ser-

vices [M+07]. Global grids are different from the ap-

proach proposed in this paper in that it connects re-

sources offered by different organizations (and hosted 

on different platforms) by forming different administra-

tive organizational units known as virtual organizations 

(VOs) [FKT01]. Although global grids are scalable and 

autonomous, they are harder and much more complex 

to build as they require extensive coordination and 

synchronization between different organizations, 

higher security measures, and integration between the 

resources that are hosted on various hardware architec-

tures/platforms and operation systems. Global grids are 

also more suitable for long-running tasks where each 

task may take several hours to complete. 

3   The Basics of Option Pricing 

 

This section introduces the definitions and basic 

terms related to options and option pricing. 

 

3.1   Options 

 

An option or financial option is a contract (also 

known as a security) between two parties that speci-

fies the terms of quantity, price, conditions (includ-

ing the right to buy or sell), class, and the expiration 

date of the underlying asset. The underlying asset 

can be a stock, currency, debt, index, bond, real 

estate, commodity, and the like. 

Different styles of options are available such as 

Exotic, Non-vanilla, and most commonly American 

and European options. The option’s style refers to 

the class to which the option belongs. In general, the 

date on which an option can be exercised is the most 

important factor that defines the option’s style. Ex-

ercising an option means that the holder is able to 

buy or sell the underlying asset, according to the 

type of the option, terminating the contract between 

the two parties is immediate. For example, Ameri-

can options can be exercised at any time up to their 

expiration date, whereas European options can only 

be exercised at their expiration date. This paper 

focuses on the valuation of European options. 

Before delving into the details of the options pricing and 

the grid-based implementation, the readers should first 

understand the basic terms of an option [***11a]: 

- Spot Price: The current market price of the un-

derlying asset. 

- Strike Price: The specified price on the option 

contract. 

- Maturity: The expiration date of the contract at 

which the option can be exercised. 

- Volatility: The relative change of the option 

price. The volatility value is generally affected 

by the market’s conditions and the option’s 

supply and demand. 

- Risk-free Rate: In finance, this variable refers 

to the return rate an investor expects to make 

from a risk-free investment over a given period 

of time. This assumption is theoretical since no 

investment is free of risk or financial loss and 

thus, risk-free rate can be estimated by the vari-

ance in the actual return around the expected 

return.  

There are two main types of options [Hul11]: 

1. Call Options: An option that gives its holder 

the right (not an obligation) to buy the under-

lying asset by a certain date for a certain 

price. If K is the strike price and ST is the 

spot price, then the payoff of European call is 

calculated using equation (1). 
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(1) 

 

2. Put Options: An option that gives its holder 

the right (not an obligation) to sell the under-

lying asset by a certain date for a certain 

price. The payoff European put is calculated 

using equation (2). 

 

 
(2) 

 

3.2   Monte Carlo Technique for Option Pricing 

 

As illustrated in Fig. 1, the idea behind the pricing 

of financial options using the Monte Carlo method 

is straightforward where the valuation process is 

broken down into four simple steps [Gla03]. 

 

 
 

Fig. 1. Steps of Monte Carlo-based options pricing 

 

In order to implement a Monte Carlo simulation, a 

simulation for the geometric Brownian motion 

(GBM) process for the underlying asset is needed 

[Ros09]. Based on the Black-Scholes model, the 

evolution of the stochastic differential model (SDE) 

can be determined using equation (3) [FS73]. 

 

 
(3) 

 

The change in the option price is dS; µ is the drift 

rate; σ is the volatility; Wt is a standard Brownian 

motion; dt is a time interval/increment at t = 0; and 

the value of S(0) is S0 which represents the current 

value of the option. 

Based on equation (3), the solution of the SDE is 

derived as illustrated in equation (4). 

 

 
(4) 

 

The risk-free interest rate (which in general is con-

tinuously compounded) is r; and W(T) is a random 

variable. Based on the standard normal distribution 

of W(T), equation (4) can be re-written as illustrated 

in equation (5). 

 

 
(5) 

 

Z is a random variable of the standard normal distri-

bution (mean 0 and deviation 1). 

To valuate an option with the Monte Carlo method, 

a large number of simulations is required: a mini-

mum of 10,000 simulations is needed to price an 

option with a satisfactory accuracy. This constraint 

makes pricing with the Monte Carlo method slow 

and computer-intensive. 

As mentioned earlier, the standard error in the esti-

mated value is mainly related to the square root of 

the number of simulations. Thus, quadrupling the 

number of simulations will halve the error. For in-

stance, at least 40,000 simulations are needed to 

double the accuracy of an option price resulting 

from 10,000 simulations. Certainly, this will make 

the valuation process much slower and more com-

puter-intensive. From equations (4) and (5), equa-

tions (6) and (7), which are used to calculate the 

European call price and put price, can be deduced, 

respectively. 

 

 
 

(6) 

 
(7) 

 

 

The discount factor is e
-rT

; and n is the number of 

random simulations. 

To obtain more accurate results from the Monte 

Carlo–based option pricing, the simulations can be 

performed in a path-dependent manner. This form, 

which will be used for the evaluation of our frame-

work, simply means that the simulation process is 

divided into a set of discrete time steps where the 

option price will be evaluated in each time step in 

addition to the master evaluation illustrated in equa-

tions (7) and (8). If m is the number of time steps, 

then equations (8) and (9) can be used for the 

evaluation of the path-dependent European call 

price and European put price, respectively. 
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(8) 

 

(9) 

 

 

4   Grid Computing 

 

Grid computing refers to the ability to combine, coordi-

nate and share different computing resources in a scal-

able and dynamic manner to obtain powerful capabilities 

in order to meet the complicated needs that are hard to 

cost-effectively fulfill by other means [FK04]. 

Supercomputers are usually utilized in cases where 

enormous resources are needed to solve very com-

plex and computationally-intensive problems 

quickly and efficiently. Examples of these problems 

include deigning a new plane or vehicle, financial 

analysis and modeling, weather forecasting, risk 

analysis, urban planning, pharmaceutical engineer-

ing, film making and 3D rendering. However, most 

organizations, especially small-to-medium enter-

prises (SMEs) and non-profit organizations cannot 

afford such solutions. Grid computing allows or-

ganizations to have a supercomputer-like perform-

ance but at much lower costs. This goal is accom-

plished by networking these resources in a way that 

allows end users to use them autonomously as if 

they are all coming from a single powerful com-

puter. 

As mentioned earlier, grid computing is one form of 

the parallel computing models where processing 

takes place concurrently on a number of nodes (also 

known as hosts). These nodes can be standalone 

machines, servers, clusters, supercomputers, or a 

combination of any of them. The interaction be-

tween grid nodes can take different forms. A Mas-

ter/Worker parallel model is one of the commonly 

followed paradigms in grid computing. As its name 

denotes, this model is composed of two constituent 

parts: 1) A Master which is a central node (or clus-

ter of nodes) that is responsible for scheduling and 

dispatching the work units, and receiving the results; 

2) Workers that work together to execute the as-

signed jobs. Grid workers can either be full time 

workers solely dedicated to executing the incoming 

jobs, or non-dedicated where they join the grid to 

voluntarily execute the jobs only when they are idle 

and then leave once they are needed to perform tra-

ditional tasks. 

As illustrated in Fig. 2, a user sends a complex job 

to the master node via a grid-enabled application. 

This client application is responsible for breaking a 

complex job into a number of smaller and simpler 

sub-jobs (also known as subtasks). Then, the master 

allocates workers in order to assign the queued sub-

jobs to. As illustrated in Fig. 2, a user sends a com-

plex job to the master node via a grid-enabled appli-

cation. This client application is responsible for 

breaking a complex job into a number of smaller 

and simpler sub-jobs (also known as subtasks). 

Then, the master allocates workers in order to assign 

the queued sub-jobs to. The result of every com-

pleted sub-job is then sent back to the master in 

order to have it forwarded back to the client. Ac-

cording to the client application logic, it can decide 

whether to use the received results “as is” or to exe-

cute some post-processing operations such as for-

matting the results or combining them into a single 

output. 

Windows operating system (OS) is the most promi-

nent operating system around the world. Different 

versions of Widows OS are already installed on over 

80% of personal computers and corporate servers 

[***11b]. Thus, deploying grids on a Windows en-

vironment is reasonable and could be beneficial for 

both profit and non-profit enterprises. 

.NET Framework (pronounced as “dot net”) is the cut-

ting-edge development technology offered by Microsoft 

for Windows environment. A number of grid technolo-

gies compatible with the .NET environment are now 

available in the market. Some of these products are open-

source such as Alchemi [***11c], some are freeware 

such as Utilify [***11d], and others are commercial such 

as Aneka [***11e] and DigiPede [***11f]. 

To implement the proposed framework, Alchemi has 

been used. Alchemi is a grid-enabling middleware with 

a set of Application Programmable Interfaces (APIs) 

developed by the GRIDS research team at Melbourne 

University [L+05]. Alchemi is composed of three main 

components: 1) Manager which acts as a master that 

manages the whole grid. 2) Executor which acts as a 

grid worker that actually process tasks. 3) Dashboard 

which enables implementers to monitor the state and 

utilization of the running grid(s), and the number of 

running applications and executors. 

Alchemi deploys a thread-like programming model 

where the computational process is subdivided into 

a set of smaller units that are distributed over the 

available number of executors [L+05]. The manager 

queues the created jobs and schedule them accord-

ing to the availability of the executors. If the number 

of the queued jobs is larger than that of the free 

executors, the manager assigns a number of jobs that 

matches the free executors, and when one of the 

assigned jobs has been completed, the manager 

sends a new job to the returning executor, and so on. 

Alchemi offers three events that fire according to 
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the status of the grid jobs in order to notify the end 

users (and developers): 1) “ThreadFinish” which 

fires when a single grid job is successfully com-

pleted. 2) “ThreadFailed” which fires when a grid 

job has failed. 3) “ApplicationFinish” which fires 

when all grid jobs are executed. 

The latest stable release of Alchemi is 1.0.6 which 

can be downloaded from the Alchemi page on 

SourceForge [***11g]. Alchemi 1.06 works fine on 

Windows XP and Windows 7 and it comes with 

easy installation wizards. However, a number of 

difficulties have been encountered in installing and 

using Alchemi on Windows Vista. 

 

5   Implementation 

 

This section gives the readers all the details regard-

ing the implemented framework including the archi-

tecture and the C# code written to grid-enable the 

Monte Carlo simulation for European Option Pric-

ing. 

 

5.1 Architecture 

 

Fig 3, illustrates the graphical user interface (GUI) 

of our grid-based Monte Carlo simulator. As men-

tioned, the framework has been implemented using 

.NET framework and C# language as well as Al-

chemi APIs. The end user passes the connection 

string information to the deployed grid including the 

grid IP, port number, username and password. The 

end user also passes the simulation parameters so 

that the simulator can calculate the assigned tasks. 

These parameters are: 1) An Excel document con-

taining the simulation parameters/variables; 2) Excel 

ranges from which the valuation parameter can be 

extracted; 3) the appropriate sheet; 4) and finally the 

output range for the returned results. Each column in 

the spreadsheet represents a specific type of variable 

(such as spot, strike, etc.); whereas each row repre-

sents a set of input variables required to run one 

valuation process. Thus, the granularity level of our 

grid jobs is one row (or valuation task) per a job. As 

will be discussed latter, job sizing is one of the most 

important factors for the success of the grid-

enabling phase for the Monte Carlo simulations. 

The readers should note that storing the input parame-

ters is not limited to Excel. Other means such as text 

files, comma-separated values (CSVs), Extensible 

Markup Language (XML) and databases can be used to 

store and pass these parameters, and to save the re-

turned result sets as well. Fig. 4 illustrates a snapshot of 

some of the input parameters placed in the Excel sheet 

used for our Monte Carlo simulations. 

 

 
 

Fig. 2. High level architecture of the grid computing model 
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Fig. 3. Client application 

 

 
 

Fig. 4. Sample input parameters 

 

 
 

Fig. 5. Monte-Carlo based Options Pricing Frame-

work 

As illustrated in Fig. 5, the architecture of our 

framework is typically based on the general archi-

tecture of the enterprise grids (showed in Fig. 2). 

The end user passes the valuation parameters to the 

grid through the client application which in turn 

creates the needed number of grid jobs. When these 

jobs are received by the manager, they are queued 

and scheduled for execution on the connected ex-

ecutors. After distributing the jobs to the connected 

executors, the manager waits till some results are 

received. When one valuation task is completed or 

has failed, the end user is notified via the client ap-

plication by firing the “ThreadCompeted” event or 

the “ThreadFaild” event, respectively. Developers 

are able to catch the failed jobs and write a logic 

that can re-submit them to the grid or process them 

locally. When all jobs are completed, the client ap-

plication stores the returned call prices and put 

prices into the designated column(s). 

 

5.2 Client Code 

 

The code of the client application is responsible for: 

1) enabling the end user to feed the grid with the 

input values (i.e., simulation variables); 2) creating 

the simulation jobs based on the passed variables 

and configuration settings. The client application 

also contains the GUI elements, components and 

logic. The logic that is used to read user inputs, cre-

ate the simulation jobs and submit them to the grid 

is abstracted below: 
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//Connection string to the grid 

//Parameters: server name, port number, username, pass-

word 

GConnection gc = new GConnection("localhost", 9000, 

"user", "user"); 

 

//Creates a new grid application 

GApplication App = new GApplication(gc); 

App.ApplicationName = "European Option Pricing Monte 

Carlo Simulation"; 

 

//Adds the module containing EuropeanOptionPricing-

Thread to the application manifest 

App.Manifest.Add(new ModuleDepend-

ency(typeof(EuropeanOptionPricingThread).Module)); 

 

//Load input file (omitted for two reasons 1. each devel-

oper may use different logic; 2. to make code simpler 

//Iterate through input value 

EuropeanOptionPricingThread 

_EuropeanOptionPricingThread = new EuropeanOption-

PricingThread(spot, strike, maturity, volatility, rate, steps, 

simulations); 

//Adds the created job (thread) to the list of the grid jobs. 

These jobs will be distributed to the grid executors for 

processing 

App.Threads.Add(_EuropeanOptionPricingThread); 

//Start processing on the grid 

App.Start(); 

[C# code of the client application] 

 

5.3 Grid Enabling Code 

 

As illustrated below, to create grid jobs, a class that 

implements the “GThread” class offered by Alchemi 

must be created. “GThread” class is one of the pub-

lic classes offered by the Alchemi APIs. To imple-

ment the “GThread” class, developers must first add 

a reference to the “Alchemi.Core” dynamic library 

(.dll) in their code, and then add the “using Al-

chemi.Core.Owner;” directive in their implementa-

tion class. The implementation class must be marked 

with the “[Serializable]” attribute otherwise runtime 

errors will be fired and no jobs will be executed on 

the grid. 

 
using System; 

using Alchemi.Core.Owner; 

namespace OptionPricing 

{ 

    [Serializable] 

    public class EuropeanOptionPricingThread : GThread 

    { 

        double _spotPrice, _strike, _maurity, _volatility, 

_riskFreeRate; 

        int _nsteps; 

        long _nsimulations; 

        double[] _result; 

 

public EuropeanOptionPricingThread(double spotPrice, 

double strike, double maurity, double volatility, double 

riskFreeRate, int nsteps, long nsimulations) 

{ 

    _spotPrice = spotPrice; 

    _strike = strike; 

    _maurity = maurity; 

    _volatility = volatility; 

    _riskFreeRate = riskFreeRate; 

    _nsteps = nsteps; 

    _nsimulations = nsimulations; 

} 

//This method is responsible for executing the processing 

logic on one of the grid nodes (executors) 

public override void Start() 

{ 

    //Create an instance of the class that contains the actual 

Monte Carlo simulation logic for Option Pricing 

    EuropeanOptionPricing _EuropeanOptionPricing = 

new EuropeanOptionPricing(_spotPrice, _strike, 

_maurity, _volatility, _riskFreeRate, _nsteps, 

_nsimulations); 

    //Call the simulation method 

    _result = _EuropeanOptionPricing.Calculate(); 

} 

} 

} 

[C# code of that implements the Start() method of Al-

chemi] 

 

5.4 Calculation Code 

 

As illustrated below, the calculation/simulation 

logic is encapsulated in a method called “Calcu-

late()”.  This method, in basic terms, performs the 

four Monte Carlo steps illustrated in Fig. 1 and 

briefly described in equations (3), (8) and (9) 

[Hau06]. As illustrated, the “Calculate()” method 

refers to two external methods, namely “GenerateR-

andomNumbers()” and “GetMean()”. 

“GenerateRandomNumbers()” is responsible for 

generating a set of random values that will be used 

during the simulation process. In this work, a pseu-

dorandom number generator using the Box-Müller 

transform is used [BM58]. 

“GetMean()” method is responsible for averaging 

the values of the generated paths (i.e., payoffs). 

 
using System; 

namespace OptionPricing 

{ 

    [Serializable] 

    public class EuropeanOptionPricing 

    { 

        //Members 

        double _spotPrice, _strike, _maurity, _volatility, 

_riskFreeRate, _nsteps, _nsimulations; 

 

        //Constructor 

        public EuropeanOptionPricing(double spotPrice, 
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double strike, double maurity, double volatility, double 

riskFreeRate, double nsteps, double nsimulations) 

        { 

            _spotPrice = spotPrice; 

            _strike = strike; 

            _maurity = maurity; 

            _volatility = volatility; 

            _riskFreeRate = riskFreeRate; 

            _nsteps = nsteps; 

            _nsimulations = nsimulations; 

        } 

 

//Calculates the Call and Put prices and returns them in a 

two-elements (single dimension) array 

public double[] Calculate() 

{ 

    double dt = _maurity / _nsteps; 

    double vsqrdt = _volatility * Math.Pow(dt, 0.5); 

    double drift = (_riskFreeRate -Math.Pow(_volatility, 2) 

/ 2) * dt; 

    double[] callpayoffvec; 

    callpayoffvec = new double[(int)_nsimulations]; 

    double[] putpayoffvec; 

    putpayoffvec = new double[(int)_nsimulations]; 

    long counter = 1; 

    double[] randvec = NRandVars(_nsteps * 

_nsimulations); 

    for (long i = 1; i <= _nsimulations; i++) 

    { 

        double st = _spotPrice; 

     double curtime = 0; 

     for (int j = 1; j <= _nsteps; j++) 

     { 

         curtime = curtime + dt; 

         double randvar = (double)randvec[counter]; 

         st = st * Math.Exp(drift + vsqrdt * randvar); 

         counter = counter + 1; 

     } 

     callpayoffvec[i - 1] = Math.Max(st - _strike, 0.0); 

     putpayoffvec[i - 1] = Math.Max(_strike - st, 0.0);} 

     double callPrice = Math.Exp(-_riskFreeRate * 

_maurity) * GetMean(callpayoffvec); 

     double putPrice = Math.Exp(-_riskFreeRate * 

_maurity) * GetMean(putpayoffvec); 

     double[] returnValue = new double[] { callPrice, put-

Price }; 

    return returnValue; 

} 

//Returns an array of n normally distributed variables 

using box muller transformation 

public double[] NRandVars(double value) 

{ 

    double[] randomArray = new double[(int)value + 1]; 

    double n2 = 0, v1 = 0, v2 = 0, tmp = 0, fac = 0; 

    int counter = 0; 

    n2 = Math.Floor((double)value / 2); 

    counter = 0; 

    Random random = new Random(); 

    for (long i = 1; i <= n2; i++) 

    { 

        do 

        { 

            v1 = 2 * random.NextDouble() - 1; 

            v2 = 2 * random.NextDouble() - 1; 

            tmp = v1 * v1 + v2 * v2; 

        } while (!(tmp <= 1)); 

        fac = Math.Sqrt(-2 * Math.Log(tmp) / tmp); 

        counter = counter + 1; 

        randomArray[counter] = v1 * fac; 

        counter = counter + 1; 

        randomArray[counter] = v2 * fac; 

    } 

    if ((value > (n2 * 2))) 

    { 

        do 

        { 

            v1 = 2 * random.NextDouble() - 1; 

            v2 = 2 * random.NextDouble() - 1; 

            tmp = v1 * v1 + v2 * v2; 

            } while (!(tmp <= 1)); 

            fac = Math.Sqrt(-2 * Math.Log(tmp) / tmp); 

            counter = counter + 1; 

            randomArray[counter] = v2 * fac; 

    } 

    return randomArray; 

} 

//Returns mean of an array 

public double GetMean(double[] x) 

{ 

    double tmpsum = 0; 

    float n = x.GetUpperBound(0) - x.GetLowerBound(0) 

+ 1; 

    for (int i = x.GetLowerBound(0); i <= 

x.GetUpperBound(0); i++) 

    { 

        tmpsum = tmpsum + x[i]; 

    } 

    return tmpsum / n; 

} 

} 

} 

[C# code of the calculation class] 

 

6   Evaluation Results 

 

The presented framework has been evaluated on a 

test-bed consisting of 2, 4, 8 and 16 laptops. The 

laptops were connected through an Ethernet network 

using a traditional 100mbps switch. All simulation 

nodes had the same hardware specifications and 

operating system, namely processor: Intel Core i5 

2.3 GHz; RAM: 4 GB; and Windows 7 (64 bit). One 

of the nodes was configured to play both the Man-

ager and Executor with the client application also 

installed. The remaining nodes were only configured 

to act as executors. 

To evaluate the efficiency of the grid-based Monte 

Carlo simulator, 10,000 runs (valuations) for Euro-

pean Options were simulated using different sets of 

variables. Each run was simulated 100,000 times to 
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obtain (nearly) accurate results. To further improve 

the accuracy, 10 time-steps for each run were used. 

This, on one hand, has notably improved the accu-

racy of the simulations, but on the other hand, it 

dramatically increased the total valuation time. 

As mentioned earlier, to parallelize the simulation 

process of the implementation, the client application 

was configured to create a single job for each valua-

tion task. Certainly, this configuration is not suitable 

for all Monte Carlo simulations; implementers 

should reasonably size and scope their grid jobs 

according to the complexity and length of the core 

valuation process. That is, creating long-running 

jobs that would take several minutes or hours, or 

very short jobs that would take only few millisec-

onds may negatively impact the overall performance 

of the deployed grid. In the former case, the jobs 

(runs) might run in a serial-like manner ignoring the 

advantage of having a grid of computers, whereas in 

the latter, a large number of network round trips 

would be incurred, and the Manager node might be 

overloaded with the incoming requests. 

Before running the simulations on the deployed test-

bed, they were tested separately on a single ma-

chine. This enabled the grid-based model to be eas-

ily compared with the traditional (non-grid based) 

model. Fig. 6 illustrates how the grid-based simula-

tion model enabled us to cut the total simulation 

time drastically. As shown, the simulation time was 

proportionally reduced with the number of installed 

computers. This speedup is directly associated with 

the fact that the grid computing model combines the 

power of the deployed computers to calculate differ-

ent simulation paths/runs simultaneously. 

 

 
 

Fig. 6. Simulation time on Grid vs. Single Nodes 

 
 

 

7   Conclusion 

 

The utilization of enterprise grids allows businesses, 

organizations and educational institutions to effec-

tively run Monte Carlo simulations without the bur-

den of time, complexities or costs. This work pre-

sented a grid-enabled options’ valuation framework 

based on the Monte Carlo method. The paper started 

with an introduction to the Monte Carlo method. A 

historical review for the related work was also pre-

sented to show how the proposed framework is dif-

ferent. The basic terms of financial options and grid 

computing were also given before discussing the 

proposed framework. Then, the implementation 

details including the architecture, used technologies 

and the C# code of the client application, Euro-

peanOptionPricing, EuropeanOptionPricingThread 

class were discussed. 

Results show that the speed of the grid-enabled 

valuation for the European options using the Monte 

Carlo method increases proportionally with the 

number of connected workers. The readers might 

think that the presented simulations could run in 

zero or (near to zero) seconds if it is performed on a 

bigger and more powerful grid. In fact, this is not 

possible due to a number of factors including the 

underlying network topology and speed as well as 

the scheduling mechanism used by the grid middle-

ware. However, implementers are still able to easily 

and efficiently obtain a supercomputer-like per-

formance with only a fraction of the cost. 
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