
Anale. Seria Informatică. Vol. XI fasc. 2 – 2013
Annals. Computer Science Series. 11

th
 Tome 2

nd
 Fasc. – 2013

9

SSEERRVVIICCEE--OORRIIEENNTTEEDD AARRCCHHIITTEECCTTUURREE::

KKEEYYSS TTOO SSUUCCCCEESSSSFFUULL AADDOOPPTTIIOONN AANNDD IIMMPPLLEEMMEENNTTAATTIIOONN

QQuussaayy FF.. HHaassssaann

Faculty of Computers and Information Systems, Mansoura University, Mansoura, Egypt

ABSTRACT: Since the emergence of the SOA model,

many organizations –both public and private– sought out

to adopt it in order to acquire the desired agility level

they seek to efficiently meet their needs. However, SOA

adoption is not a trivial task given the number of chal-

lenges that should be overcome in order to reap the

inherent benefits. This paper addresses the top chal-

lenges that might prevent adopters from achieving a

successful implementation of SOA in their organiza-

tions.

KEYWORDS: SOA, SOA Adoption Challenges and

Solutions.

INTRODUCTION

SOA is a promising paradigm that presents a number

of benefits to its adopters including [Has09, Kob05]:

 Reusability: Technical components and busi-

ness functionalities are abstracted, after remov-

ing redundancies and inconsistencies, in a form

that allows them to be used again and again by

different systems and business units.

 Data Sharing: Underlying data could be shared

between different systems, by wrapping data

sources with joint data service.

 Location/Platform Independence: A greater

interoperability is enabled between different sys-

tems and business partners. This is achieved by

allowing access to services regardless of their

physical locations or used platforms.

 Business Alignment: Since the “service” is

originally a business term, SOA enables a better

alignment between IT and business professionals.

The aforementioned benefits would result in shorter

time-to-market, fewer bugs, increased productivity,

and cost savings when building, integrating, or main-

taining software systems. However, the ability to real-

ize these benefits strongly depends on properly ad-

dressing the challenges that SOA adopters might face.

These challenges range from an inconsistent prior

understanding of SOA through implementation ob-

stacles to incomplete management strategies. Lacking

awareness of these challenges could place SOA im-

plementations at risk and could lead to complete im-

plementation failure among its adopters. In the subse-

quent sections bellow, the paper will discuss the key

adoption challenges and introduce some approaches that

organizations can follow to ensure a successful SOA

implementation.

1. UNDERSTANDING

The meaning of SOA is interpreted differently from one

person to another [***07a]:

 A product: Organizations usually think of SOA as

a product that can be purchased from software

vendors. This belief stems from the fact that labels

of SOA are placed on the software vendors’ web-

sites and in their brochures.

 A synonym to XML Web Services: Web Ser-

vices is simply a modern technology that allows

access to remote objects. Conversely, SOA is a

design methodology that aims to build systems in a

way that makes them easy to reuse and integrate.

People unknowingly use the two terms interchan-

geably because most SOA-based implementations

are built with Web Services.

 A goal: SOA is not a goal in and of itself. Rather,

it is a way to build software in terms of abstract,

callable components known as services. These

services can be flexibly used/re-used whenever

needed.

SOA in simple terms is a design model that tends to

package existing or new functionalities as a collection of

accessible services. These services can communicate

with each other to pass information, and/or coordinate

business workflows while abstracting technical details.

A service is a well-defined, self-contained block that is

composed of a set of operations and components, built

in a way that lets them be dynamically integrated to

cover technical and/or business needs. A service can

perform a simple functionality as that of calculating a

loan interest rate, or a complete business workflow such

as granting a loan.

Each service has three constituent elements:

 Contract: Provides informal specifications of the

purpose, functionality, constraints and usage of the

service. It also contains a formal definition based

on a description language such as IDL or WSDL

that provides information about the programing

Anale. Seria Informatică. Vol. XI fasc. 2 – 2013
Annals. Computer Science Series. 11

th
 Tome 2

nd
 Fasc. – 2013

10

language, middleware, network protocols, and

runtime environment.

 Interface: Acts as a stub/proxy class that ex-

poses available operations.

 Implementation: Contains the physical imple-

mentation of the service logic which may be en-

capsulated internally within the service itself or

provided by external components. The separation

between the service interface and the implemen-

tation offers a “clean” model that enables de-

signers/developers to change the underlying logic

without affecting the callers.

Work in SOA is done collaboratively by three distinct

parties [Pap03]:

 Provider: Creates, publishes, and maintains ser-

vices.

 Broker: Enables access to the registered servic-

es. The service registration process refers to

publishing services (either inside the organization

or externally via the Internet) with information

that enables clients to discover and bind to them.

Client: Looks for services that meet its specifications,

and follows the instructions to test and use them. The

interaction between clients and services normally

deploy the request/reply model, where a service re-

ceive requests from clients and forward back the

returned results.

Different services can be combined together to form a

composite service, again while hiding underlying com-

plexities. However, in real SOA models, each service

must not depend on the state of other services. That

is, calls between individual services must not be em-

bedded inside them, but rather, the composition and

“glue” logic must remain outside of the services. Or-

chestration tools or a custom code can be used to

associate separate services together either in new

composite services or directly in client applications.

It is clear that this perspective is quite different from

traditional methods that depend on creating a myriad

of (mostly redundant) software systems for business

silos. These systems are usually created to meet to-

day’s needs without considering unforeseen require-

ments [KBS04]. Modifying (or the integrating with)

these systems is a burden that IT executives face in

organizations, making them less agile in meeting the

business needs. For instance, a legacy system is usual-

ly composed of statefull, tightly-coupled objects that do

not separate between operations, interfaces, and busi-

ness processes leading to spaghetti architectures that

are hard to understand and time-consuming to modify.

Conversely, leveraging SOA to turn software systems

into a set of tested infrastructure common services,

that would be built upon to meet business fluctuations,

could promote organizational agility and performance

[RH08].

In spite of what preceded, SOA is not a panacea that

can solve all the organization’s problems. Hence, adop-

ters should know exactly why they want to migrate to

SOA and what to expect from that switch. This is cru-

cial because in many situations it might be considered a

wrong move. Some of the cases which SOA might not

be suitable for include [L+05]:

 Organizations that cannot afford to abandon their

investments in existing applications and systems to

redevelop them from scratch as services.

 The ability to convert the non-SOA based systems

to SOA-based ones is one of the core benefits of

the model; however, the technical specifications of

these systems such as age, architecture, technolo-

gies, and documentation, can complicate this

process.

 Lack of information about existing systems.

 High costs, risks, and efforts linked with the migra-

tion process.

 A big gap might exist between the state of the ex-

isting systems and the future state of the targeted

services.

 Lack of a clear vision and a migration strategy.

In such cases, leveraging SOA may not be the way to

go and may lead to some undesired results. Thus, know-

ing exactly why, when and how to use SOA is critical

for a successful adoption.

Organizations can decide whether to adopt SOA or not

by reading about others’ prior experience. This would

provide initiatives with the necessary details about the

conditions for using SOA as well as a deeper under-

standing of distinct implementation challenges, obstacles

and best solutions. After that, initiatives can start the

adoption journey by migrating a small, non-critical appli-

cation. Following a “think big, start small” approach will

give adopters the chance to better understand the value

of SOA while minimizing the risks.

Another helpful recommendation is to plan an adoption

roadmap. This roadmap should involve: understanding

the business domain; gathering information about cur-

rent processes, applications, integrations, security, data

and governance; and reducing the SOA gap readiness

[B+05]. Such roadmap might also include an impact

analysis to forecast the extent of change to the existing

resources affected by SOA, transition plans, and ap-

proximate estimates to the future growth of services.

2. KNOWLEDGE

Most software specialists are knowledgeable about

traditional terms and paradigms, such as functions,

classes, modules, libraries/components, and Object-

Oriented Programming. This knowledge allows soft-

ware specialists to accomplish their regular tasks effi-

ciently. However, these skills alone are not enough

Anale. Seria Informatică. Vol. XI fasc. 2 – 2013
Annals. Computer Science Series. 11

th
 Tome 2

nd
 Fasc. – 2013

11

when dealing with SOA since it comes with its own

terms and methodologies.

To enable people to professionally deal with SOA,

they should first learn about the basics. This should

include the aspects of SOA lifecycle which includes

analysis, modeling, design, implementation and testing

[T+**]. Table 1 briefly lists the main differences be-

tween these aspects in SOA and traditional paradigms.

Table 1. Traditional paradigm vs. SOA paradigm

 Traditional Paradigm SOA Paradigm

Analysis  Requirements are given in a natural

language to system analysts who con-

vert them to technical specifications in

order to enable developers/designers to

understand them.

 Domain analysis is solely done by providers, enabling

application builders to focus only on finding and com-

bining services that meet business/technical specifica-

tions.

Modeling  Stakeholders use various models such

as use cases diagrams, sequence dia-

grams and flowcharts to represent re-

quirements, and specifications. Howev-

er, keeping these models updated to re-

flect technical changes is challenging.

 Models are represented in a machine-readable form,

associated with policies and specifications that enable

service builders to automatically translate them into

an executable code.

Design  Relationships between the underlying

objects are statically defined so they

cannot be changed once created.

 UML and word processors are usually

used to create system models.

 Bindings and relationships are dynamically defined at

runtime instead of static definition at de-

sign/development time. Hence, new services can be

dynamically created using existing ones.

 Sophisticated tools and languages such as MS.NET,

BizTalk, WebSphere, Oracle SOA Suite, and BPEL

are used to design services and workflows.

Implementation  Development is performed by a single

(virtual or physical) party that creates

functions, classes, modules and libra-

ries.

 Object-oriented languages such as java,

c++, c# are used to develop system

constructs.

 Development is divided between a service provider

and an application builder. A service provider writes

and exclusively owns the code of the offered servic-

es, whereas an application builder develops client ap-

plications that make use of the offered services. This

separation enables application builders to focus on

business logic while leaving the technical details to

service providers.

 Open standards such as XML, WSDL, SOAP, XSD

and XSLT are usually used to build and call services.

Testing  Testing is usually performed by testers

in the same organization.

 Validation and verification (V&V) is

performed based on the source code

and functional specifications.

 Test cases are defined by develop-

ers/testers, usually from within the

same organization.

 Test scripts are defined by develop-

ers/testers.

 Testing is divided between a service provider, a bro-

ker and a client, with little or no interaction between

them.

 Service provider tests services based on the function-

al specification and source code, and it then creates

test cases for other parties.

 Service Providers give test cases to brokers and

clients, and therefore services can be tested before

their registration and usage, respectively.

 Test scripts can be automatically generated on the

spot by both brokers and clients during the V&V

process based on service metadata and specifica-

tions.

In addition to educating software specialists about the

basics of SOA, decision makers should learn about

SOA so they can know in which scenarios it can be

leveraged. In this regard, software and business

schools should offer courses and curriculums about

SOA [T+06]. This would permit IT and business pro-

fessionals to gain the missing knowledge and skills that

would allow them to apply SOA methods in situations

where doing so make sense.

3. GOVERNANCE

Anale. Seria Informatică. Vol. XI fasc. 2 – 2013
Annals. Computer Science Series. 11

th
 Tome 2

nd
 Fasc. – 2013

12

Governance is probably the most important part in the

entire adoption lifecycle. The broad definition of SOA

governance refers to the processes, policies, principles

and best practices that an organization applies to en-

sure the successful implementation of SOA. The pur-

pose of having a solid governance framework is to

efficiently control different aspects related to services,

such as people, technologies, business and quality of

service, and thus, delivering value to the organization

[***07b]. Without efficient governance, SOA imple-

mentation could be chaotic: the total adoption process

could easily fail. Governance strategies should be

planned and defined before the implementation phase,

not afterwards. This can be achieved by constructing

an internal governing committee to manage all aspects

of services. Governance aspects are like a puzzle that

is composed of various components, including:

 Identifying SOA stakeholders including those

who will participate in the governance body.

 Clearly defining the responsibilities of the identi-

fied stakeholders.

 Identifying and specifying services that add value

to business.

 Listing the type and granularity of services.

 Defining the different versions and uses for each

service.

 Choosing communication models and message

patterns.

 Choosing technologies that will be used to realize

the services.

 Designing formal specifications and description

documents.

 Reviewing the addition and deletion of services.

 Creating V&V and test models.

 Establishing policies for fixes and updates.

 Planning monitoring/audit strategies.

4. BUDGET

One of the benefits of using SOA is the reduction of

costs. However, this reduction is difficult to accom-

plish during the initial stages of the implementation

[Rai09]. Adopters can expect expending significant

resources to procure the necessary hardware and

software tools, train staff, and convert legacy systems.

These stages might last months or even years until

they reach a maturity point.

Again, initiatives should not follow a “big-bang” ap-

proach to realize a successful implementation. Rather,

they should use iterative and incremental implementa-

tions especially when constrained by the availability of

resources. This approach would give adopters the

chance to enjoy a hands-on experience to SOA while

minimizing expenditures.

In fact, the successful adoption of SOA is threatened

by the lack of awareness of the funding that should be

dedicated during the initial phases. This inattention to the

fiscal aspects could lead adopters to think that SOA is

simply a bad methodology that causes them to spend too

much money rather than saving overall costs. To alle-

viate these concerns, it is important for businesses to

conduct a thorough cost/benefit analysis before begin-

ning the design phase, so that costs are well understood.

Furthermore, as benefits are broadly shared, it is impor-

tant to identify potential stakeholders early in the design

process so that costs are equitably shared.

5. TECHNOLOGY

In principle, different technologies can be used to create

needed services. This includes Message Queues, COM,

Jini and Web Services. Each of these technologies has

its own strengths and limitations; thus, each of them has

its own comparative advantages that best fit specific

scenarios and requirements.

The question for adopters when thinking about using a

specific technology is: To what extent is that technology

supported by software vendors? Is that technology ven-

dor-based or standards-based? Using vendor-based

technologies will definitely prohibit loose-coupling be-

tween service providers and clients. The ultimate goal

of this loose-coupling is to allow clients to use the ser-

vices offered by the providers no matter what kind of

technologies were utilized to build them. Furthermore,

loose-coupling enables clients to change the used ser-

vices and even the providers with a little effect, if any at

all, on their applications.

Generally, adopters are highly encouraged to utilize

standards-based solutions to be able to gain the optimum

benefits offered by SOA. However, adopters should be

careful because the support for the standard-based

approaches varies from one vendor to another and from

one tool to another. The extension of support to stan-

dards in products depends on different circumstances

such as implementation challenges and marketing is-

sues. In some cases, a vendor misinterprets standards to

an extent that it just offers vendor-based solutions dis-

guised as standards-based ones. Preserving loose-

coupling and interoperability between service providers

and clients in such cases might be problematic due to

inconsistencies in the data types/formats, for example.

To avoid such scenarios, both providers and clients are

advised to read the original specifications, and current

implementations of the adopted standards in the offered

solutions. Understanding these specifications would

enable SOA parties to abstract services and calls with

wrappers that assure the use of original standards only

instead of masked vendor-based offerings.

Examples to standards that could be used in SOA-based

projects include CORBA, RSS, REST, and XML Web

Services.

Anale. Seria Informatică. Vol. XI fasc. 2 – 2013
Annals. Computer Science Series. 11

th
 Tome 2

nd
 Fasc. – 2013

13

XML represents the head of the standards-based

technologies pyramid available in the software field for

realizing SOA applications. The credit for favoring the

use of XML Web Services in SOA implementations

goes to its benefits, which include:

 It is easy to learn and use by both providers and

clients.

 Its broad support from key software vendors.

 Its affordability vis-à-vis proprietary technologies.

 Syntax is machine-readable, and therefore it

enables different nodes to easily interpret the

transmitted data.

 It is modular by nature, making it possible for

implementers to encapsulate their logic into sepa-

rate operations and services.

 It is “composable” allowing implementers to ag-

gregate different services together.

Implementers should always keep in mind that regard-

less of the abovementioned advantages, XML is not

the answer to all problems; it is just a rich tool that will

fit some requirements. For instance, some modern

SOA-based implementations use REST style to res-

ponsively return (representation) information in differ-

ent data format such as HTML, MIME, and plain-

text. Some other implementations use JSON-RPC as

a light-weight, text-based standard to enable bidirec-

tional communications and data interchange between

clients and services.

6. SECURITY

Security contains a number of questions that need to

be addressed before proceeding with the implementa-

tion. Some of these questions are:

 Which clients possess the rights to access availa-

ble services?

 Do all clients have similar roles and rights?

 How will secrecy of sensitive information be as-

sured when providers and clients belong to dif-

ferent organizations?

 Should services offer one view for the underlying

information to its clients?

 What is the suitable transport for the bidirectional

transmission of messages between services and

clients (and possibly other intermediaries)?

 Which format is the data going to be transmitted

in between nodes? Is it encrypted or not?

Answering these questions depends a great deal on

the business requirements as well as the technologies

utilized to achieve the offered services.

From a business perspective, it might be necessary to

access one service with different security roles ac-

cording to the sensitivity of the information offered.

For example, the manager’s role might require access

to sensitive information, such as salary reports while

the secretary’s role is to only generate reports for the

available employees with their hire dates. Moreover,

transmission of sensitive information such as SSN and

credit card numbers must be encrypted, while it is op-

tional for non-sensitive data such as employee names

and hire dates.

From a technical perspective, the used technologies

should be able to cover business requirements in an

efficient manner. To achieve this goal, these technolo-

gies should enable implementers to meet the five key

security terms [Erl05]:

1. Identification: The ability to identify both service

and data requesters.

2. Authentication: The ability to verify the identity

of both service and data requesters.

3. Authorization: The ability to ensure that callers

have permissions to execute the operations they

are trying to access.

4. Integrity: Assuring that the data being transmitted

remains unaltered while being sent between callers

and services.

5. Confidentiality: Guaranteeing that the data being

transmitted cannot be viewed while in transit ex-

cept by other authorized services. In addition to

ensuring that this data cannot be viewed or altered

by unauthorized people/processes when stored on

the providers’ servers.

In this context, it is worth mentioning that while SSL is

widely used to secure web applications, it is not the

perfect solution for web services. Alternately, WS-

Security framework can play a significant role in cover-

ing different web services security requirements. This

ranges from encrypting the contents of confidential

messages to federated sessions that allow one service

to be authenticated once in multiple security domains.

Protecting stored data with the appropriate encryption

may also be required to prevent any unauthorized

access to the database/files. Finally, traditional solutions

such as firewalls, anti-virus software, denial-of-service

and intrusion-detection systems, load-balancing, secure

coding and input/schema validations, and data backups

should be deployed to provide a higher security level to

both clients and providers.

Another concern, which is related to security, is “trust”

between service providers and clients. In fact, trust is

an essential issue that should be dealt with before em-

barking on SOA. Some of the questions that adopters

may have when considering trust include:

 How is the reliability and correctness of the of-

fered services guaranteed?

 What if clients depend on providers who decide to

leave the market?

 How will support and updates be applied and main-

tained?

Since trust is an intangible value, which cannot be in-

Anale. Seria Informatică. Vol. XI fasc. 2 – 2013
Annals. Computer Science Series. 11

th
 Tome 2

nd
 Fasc. – 2013

14

cluded in the service level agreement (SLA), it is one

of the hardest challenges to overcome. Nevertheless,

building trust between service clients and providers is

possible, yet it cannot be achieved overnight –it is

similar to trust between people.

7. PERFORMANCE

Performance is a non-functional key requirement in all

software systems. However great the business fea-

tures offered by one system, it might be deprecated

for slow performance.

As mentioned, most of the contemporary implementa-

tions of SOA depend on XML to formulate requests

and responses being exchanged between nodes. XML

uses plain-text data for describing elements of the

underlying objects. This certainly leads to bigger data

files when compared with binary messages of other

client-server technologies such as RPC.

A list of tactics that could help in overcoming perfor-

mance issues is available, including [RHH09]:

 Binary Format: XML format is composed of

many angle bracket tags. This makes both re-

quest and response files larger in size and more

complex in structure; processing such files is nei-

ther an easy nor a fast process. One way to

make the generated files smaller and simpler is to

use Binary XML [Gee05].

 Efficient Parsers: Most of the XML parsers

such as SAX and DOM depend on opening and

reading files more than once, paging and caching

data before parsing them. These techniques are

inefficient when parsing large files. To save time

and resources, fast, non-extractive techniques

should be utilized. VTD-XML (Virtual Token

Descriptor XML) is one of the popular examples

for non-extractive approaches available in the

market.

 Schema-Specific Parsers: Many XML-based

implementations use general-purpose parsers to

understand documents being exchanged between

nodes. This makes the parsing process run slowly

due to the need to extract and understand the

structure of the files before the parsing phase it-

self. Parsers can run faster by caching serializa-

tion assemblies of data objects at providers and

clients for later use.

 Silicon-based Engines: Many hardware solu-

tions are available in the market to process XML

data at a higher speed. These solutions might be

embedded into different components including

switches, routers, PCI-cards and servers.

 Break Large Messages: It is known that the

probability of network clogs is very high when

transmitting large messages between nodes. Ac-

cordingly, implementers should divide the logic em-

bedded in one complex operation into a set of

simpler operations. This could yield messages that

are smaller, thus allowing them to move faster on

the network.

 Compression Algorithms: ZIP/GZIP algorithms

might be applied on the data being transmitted be-

tween nodes. This could allow implementers to

eliminate additional spaces, making data files

smaller.

 High Speed Networks: Fast network technolo-

gies such as Gigabit Ethernets, and fiber channels

and links can be deployed to speed up the trans-

mission rate between nodes. These advanced

technologies are now available in the market, mak-

ing it possible for implementers to build powerful

infrastructures to meet the complex needs of SOA

applications.

Adopters can mix and match these techniques accord-

ing to their needs and available budgets.

CONCLUSION

SOA is being widely accepted by organizations all over

the world. However, its adoption is neither easy nor

straightforward. This paper has introduced seven issues

that SOA initiatives should consider during adoption

phases:

1. Initiatives should start their migration process with

the right understanding of SOA. A demonstration

pilot along with an effective roadmap would be

helpful for learning the basics with lower risks and

costs.

2. After understanding SOA, a deeper knowledge to

its aspects will be required. Offering training pro-

grams to the stakeholders would support the suc-

cess of the migration process.

3. Before digging into the migration process, initia-

tives should define a governance framework that

includes people, constraints, policies and strategies.

A strong governance mechanism would enable the

stakeholders to control and monitor the implemen-

tation phases, and thus, deliver value to the organi-

zation.

4. Although cost reduction is one of the benefits of

SOA, this reduction is difficult to accomplish during

the initial migration stages. Planning generous

budgets will be required to procure the necessary

hardware and software tools, train staff, and con-

vert legacy systems. These budgets should be

planned and shared by all stakeholders.

5. Choosing implementation technologies is the first

step towards the realization of identified services.

Adopters should choose technologies that best fit

their needs. Standards-based technologies are

gaining momentum in service-based projects; how-

Anale. Seria Informatică. Vol. XI fasc. 2 – 2013
Annals. Computer Science Series. 11

th
 Tome 2

nd
 Fasc. – 2013

15

ever, standardization is no silver bullet. For any

given standard, a vendor may provide a subset or

superset of features. Thus, analyzing tools is

highly recommended before using them.

6. Unique security challenges are imposed as work

is no longer done by a single entity. Assuring that

data hosted on providers’ servers or being trans-

mitted cannot be accessed or changed by unau-

thorized parties/services is one of these chal-

lenges. Reputation and reliability of service pro-

viders are the key enablers for trust between

SOA parties.

7. Finally, performance is by no means less impor-

tant than the business features of the constructed

services. Implementers should always deal with

throughput and latency as well as request-

response sizes as quality indicators to the offered

services.

Paying close attention to these issues is important to

ensuring a successful implementation. This success

will be clear to adopters once they begin reaping the

promised benefits, making organizations feel more

secure in having made the right choice.

REFERENCES

[B+05] N. Bieberstein et al: - Service-Oriented

Architecture Compass: Business Value,

Planning, and Enterprise Roadmap .

IBM Press, 2005.

[Erl05] T. Erl - Service-Oriented Architecture:

Concepts, Technology, and Design.

Prentice Hall, 2005.

[Gee05] D. Geer - Will Binary XML Speed Net-

work Traffic? IEEE Computer Society,

2005.

[Has09] Q. F. Hassan - Aspects of SOA: An

Entry Point for Starters, Annals. Com-

puter Science Series, 2009.

[Kob05] J. Kobielus - The ROI of SOA: The

more you reuse, the more you save.

Network World, 2005,

www.networkworld.com/techinsider/2005/

101005-roi-of-soa.html.

[KBS04] D. Krafzig, K. Banke, D. Slama - En-

terprise SOA Service-Oriented Architec-

ture Best Practices. Prentice Hall, 2004.

[L+05] G. Lewis et al - SMART: Service-

Oriented Migration and Reuse Tech-

nique. Proceedings of the 13th IEEE In-

ternational Workshop on Software Tech-

nology and Engineering Practice, 2005.

[Pap03] M. P. Papazoglou - Service-Oriented

Computing: Concepts, Characteristics

and Directions. Proceeding of the Fourth

International Conference on Web Infor-

mation Systems Engineering, 2003.

[Rai09] G. Raines - Leveraging Federal IT

Investment with Service-Oriented Archi-

tecture. The Journal of Defense Software

Engineering, 2009.

[RH08] A. M. Riad, Q. F. Hassan - Service-

Oriented Architecture - A New Alterna-

tive to Traditional Integration Methods

in B2B Applications. Journal of Conver-

gence Information Technologies, 2008.

[RHH09] A. M. Riad, A. E. Hassan, Q. F. Has-

san - Investigating Performance of XML

Web Services in Real-Time Business

http://www.networkworld.com/techinsider/2005/101005-roi-of-soa.html
http://www.networkworld.com/techinsider/2005/101005-roi-of-soa.html

Anale. Seria Informatică. Vol. XI fasc. 2 – 2013
Annals. Computer Science Series. 11

th
 Tome 2

nd
 Fasc. – 2013

16

Systems. Journal of Computer Science

and System Biology, 2009.

[T+06] Tsai et al - Perspectives on Service-

Oriented Computing and Service-

Oriented System Engineering. Pro-

ceedings of the Second IEEE Interna-

tional Symposium on Service-Oriented

System Engineering, 2006.

[T+**] Tsai et al - Service-Oriented Compu-

ting and System Engineering, Unpub-

lished.

[***07a] *** - ABCs of SOA, CIO Magazine,

http://www.cio.com/article/40941, 2007.

[***07b] OASIS - IT Governance and SOA Go-

vernance. 2007.

http://www.cio.com/article/40941

