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ABSTRACT: In this work, orthogonal array-based Latin 

hypercube designs (OALHDs) for eight input variables 

deterministic computer experiments was proposed. The 

proposed class of designs has some merits over the 

random Latin hypercube design with respect to space-

filling properties. In this study, a computer program was 

written to construct OALHDs. Orthogonal arrays (OAs) 

were generated following a mathematical theorem called 

Bush Construction Type I and the OAs constructed were 

subsequently used to construct the desired orthogonal 

array-based Latin hypercube designs which was used in 

the development of deterministic computer experiments. 

The OALHDs constructed have some space-filling 

properties and they can be used to develop a computer 

experiment. A MATLAB program was written to 

construct the design. 

KEYWORDS: Computer experiments, Bush construction 

type I, Latin hypercube designs, Orthogonal array, Space-

filling properties 

 

1. INTRODUCTION  

 

The rapidly increasing power of computers has made 

experimentation via computer modelling common in 

many areas of science, engineering and technology. 

Some physical phenomena that are either extremely 

complex or impossible to investigate using classical 

statistical experiments have been described by 

mathematical models implemented in complex 

computer codes (known as  simulators). The first 

computer experiment was reported to have been 

conducted by Enrico Fermi and colleagues, Strogatz 

[Str03] at the Los Alamos Scientific Laboratory in 

1953. Since then, scientists in diverse disciplines 

have embraced computer experiments as a powerful 

tool to understand their respective processes. For 

instance, Osuolale et al. [OYA14b] proposed a 

simple pendulum experiment as a demonstrative 

example for computer experiments where the time it 

took a pendulum bob to return to rest was 

determined as the output. The inputs to the computer 

code can be varied in order to determine the effect of 

different inputs on the response(s). The output(s) of 

such computer models or simulators serve as a proxy 

for the physical experimentation. A computer 

experiment is conducted using data obtained from a 

computer model in place of the physical process. 

Space-filling design like Latin hypercube design 

(LHD) is commonly used in designing computer 

experiments. In this study, Space-filling orthogonal 

array-based LHDs were constructed. Space-filling 

designs are designs that spread points evenly 

throughout the experimental region.  

Bush construction type I method found in Hedayat et 

al. [HSS99] was adopted in the construction of the 

design. The Bush construction type I is based on 

Galois fields. In abstract algebra, a field is composed 

of a set F, and two binary operations that map F X F 

into F. A simple example is the set of non-negative 

integers along with the operations of ordinary 

addition and multiplication. A Galois field is one for 

which the set F is finite. If F is a finite set of the 

integers, it is clear that ordinary addition and 

multiplication cannot be the operations of the field 

since, for example, adding the largest element of F 

to itself doesn't result in an element of F. This 

method makes use of the elements of the Galois field 

over the irreducible polynomial of the field.  

 

2. ORTHOGONAL ARRAYS 

  

Orthogonal arrays (OAs) introduced by Rao [Rao46] 

and Bose and Bush [BB52] provide better statistical 

information and are majorly used in designing 

experiments. An orthogonal array of n runs, m 

factors, s levels, strength t ≥ 2 and index λ is an n-

by- m matrix with entries from a set of s levels, 

usually taken as 0. . . s-1 such that for every n-by-m 

matrix of s symbols, every subset of t columns from 

among the m columns when considered alone must 

contain each of the possible s
t
 ordered rows the same 

number of times. The variables n, m, s, t and λ are 

referred to as the parameters of the OA and such an 

array is denoted by OA (n, m, s, t). The variable λ = 

n/s
t 
is called the index of the orthogonal array and is 

determined by the other parameters. Regular 

fractional factorial designs, as discussed in Wu and 

Hamada [WH00] are the most familiar examples of 

orthogonal arrays. The OA with 
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 is symmetric, otherwise, the 

array is said to be asymmetric.  

The construction of OALHDs is highly dependent 

upon the existence of orthogonal arrays. Another 

important problem in the study of OAs is to 

determine either the minimal number of rows n in 

any OA (n, m, s, t) for given values m, s and t or the 

maximal number of columns m for given values n, s 

and t  . The solution to this problem is adapted from 

the celebrated inequalities found by Rao [Rao47] for 

the construction of orthogonal arrays. 

 

Theorem 1. (Rao’s [Rao47] Inequalities) 

 

(i)   if t = 2u  

 

and 

 

(i)(ii) ,  

if t = 2u+1 for u ≥ 0 

 

These inequalities provide a scheme for determining 

either a lower bound on the number of experiments n 

in any OA (n, m, s, t) design for given values m, s 

and t or an upper bound on the number of factors m 

for given values n, s and t.  The proof of the 

Theorems can be found in Hedayat et al. [HSS99]. 

Furthermore, the use of these Theorems depends on 

whether t is even or odd. The approach adopted in 

this work for the construction of orthogonal array-

based Latin hypercube designs is somewhat different 

from the existing methods as this approach makes 

use of the mathematical theorem to construct  

orthogonal arrays which gave rise to the desired 

OALHDs.  

 

3. ORTHOGONAL ARRAY-BASED LATIN 

HYPERCUBE DESIGNS (OALHDs) 

 

Latin hypercube designs were the earlier design 

proposed mainly for computer experiments, McKay 

et al. [MBC79]. Latin hypercube designs ensure 

maximum of the minimum distance between design 

points and require uniform spacing of the levels of 

each input variable. LHD is a good choice with 

respect to some useful criteria such as maximin 

distance and orthogonality. Latin hypercube designs 

have become popular for a number of reasons. The 

reasons are due to the fact that it allows the creation 

of experimental designs with as many points as 

possible because of flexibility in terms of data 

density and location, and in addition, non-collapsing 

and space-filling properties. Morris and Mitchell 

[MM95] considered maximin Latin hypercube 

designs to further enhance the space-filling property 

of maximin distance designs.  

Many applications involve a large number of input 

variables and as such finding the space-filling 

designs with a limited number of design points that 

provide a good coverage of the entire high 

dimensional input space is a futile task. To break 

this curse of dimensionality, the approach of 

constructing designs that are space-filling in the low 

dimensional projections has been discussed by 

several researchers. Randomized orthogonal arrays, 

Owen [Owe92b] and orthogonal array-based Latin 

hypercube, Tang [Tan93] are such designs. An 

excellent review of design and analysis of computer 

experiments can be found in Koehler and Owen 

[KO96] and Santner et al. [SWN14]. 

A Latin hypercube design of size n has 

 

 =  ,      (1) 

 

where are random permutations of the 

integers 1,... , n.  and the m 

permutations and nm uniform variates are mutually 

independent, Owen [Owe92a]. Many authors use the 

simpler Lattice sample following Patterson [Pat54], 

where 

 

 =  ,       (2) 

 

These are two natural ways of generating design 

points in the unit cube  based on a given 

Latin hypercube. When projected onto each of the m 

variables, both methods have the property that one 

and only one of the n design points fall within each 

of the n small intervals defined by  

. The 

first method gives the points that are uniformly 

distributed in their corresponding intervals while the 

second method gives the mid-points of these 

intervals. The variables (n, m, s, t) do not have the 

same name as we do for an orthogonal array because 

they do not all have a clear statistical interpretation, 

Tang [Tan91]. For instance, s does not refer to the 

number of levels of the design as referred to in 

orthogonal array since the design has n levels. The 

other parameters n, m and t are interpreted in the 

same way.  

Orthogonal array-based Latin hypercube designs 

were proposed by Tang [Tan93]. Osuolale et al. 

[OYA14a] also presented a paper on the algorithm 

for constructing space-filling designs for Hadamard 

matrices of Orders 4λ and 8λ. Osuolale et al. 

[OYA14c] also constructed space-filling designs for 

three input variables computer experiments and 

these designs achieve better space-filling properties. 

The two methods employed in Osuolale et al. 
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[OYA14a] and Osuolale et al. [OYA14c] worked 

only for OA at two levels and three input variables 

respectively.  Orthogonal arrays are used to 

construct LHDs in this study with maximin distance 

criterion to achieve better space-filling property and 

to extend the number of input variables in the 

experiment. Therefore, an OA based Latin 

hypercube design in the design space [0, 1)
m 

can be 

generated.  

Tang [Tan94] provided a way to obtain OA-based 

Latin hypercubes based on single replicated full 

factorial designs and proved that if the underlying 

orthogonal array is optimal with respect to the 

maximin distance criterion, so is the corresponding 

OA-based Latin hypercube. Leary et al. [LBK03] 

considered searching for optimal OA-based Latin 

hypercubes that minimize 

 

2
1

1n

i j i
ijd 

  

 

where dij is the Euclidean distance, defined as  

( 1)
2

, 1,... , 1,...
ij ij

n

ij

l u
i n j m

n
d


 

        (3) 

 

with t = 2, between the ith and jth design points.  

 

4. MATERIALS AND METHODS 

 

A computer program was written in MATLAB to 

construct OALHDs.  

Theorem 2 (Bush Construction Type I)  

If   is a prime power then an , 

 of index unity exists whenever 

. The level of the OA, s =7 while the 

strength, t=2 in this case. 

Orthogonal arrays (OAs) were generated following 

Theorem 2 and they are thereafter used to construct 

the desired OALHDs using  = . OA and 

OALHD as shown in the results section stand for the 

orthogonal array and the corresponding orthogonal 

array-based Latin hypercube designs.  

 

5.   RESULTS  

 

Construction of OA (49, 8, 7, 2) LHD from Bush 

Construction Type I 

[OA,OALHD] = oalhd_test(8,7) 

OA= 

0 0 0 0 0 0 0 0 

0 1 1 2 3 5 1 6 

0 2 2 4 6 3 2 5 

0 3 3 6 2 1 3 4 

0 4 4 1 5 6 4 3 

0 5 5 3 1 4 5 2 

0 6 6 5 4 2 6 1 

1 0 1 1 2 3 5 1 

1 1 2 3 5 1 6 0 

1 2 3 5 1 6 0 6 

1 3 4 0 4 4 1 5 

1 4 5 2 0 2 2 4 

1 5 6 4 3 0 3 3 

1 6 0 6 6 5 4 2 

2 0 2 2 4 6 3 2 

2 1 3 4 0 4 4 1 

2 2 4 6 3 2 5 0 

2 3 5 1 6 0 6 6 

2 4 6 3 2 5 0 5 

2 5 0 5 5 3 1 4 

2 6 1 0 1 1 2 3 

3 0 3 3 6 2 1 3 

3 1 4 5 2 0 2 2 

3 2 5 0 5 5 3 1 

3 3 6 2 1 3 4 0 

3 4 0 4 4 1 5 6 

3 5 1 6 0 6 6 5 

3 6 2 1 3 4 0 4 

4 0 4 4 1 5 6 4 

4 1 5 6 4 3 0 3 

4 2 6 1 0 1 1 2 

4 3 0 3 3 6 2 1 

4 4 1 5 6 4 3 0 

4 5 2 0 2 2 4 6 

4 6 3 2 5 0 5 5 

5 0 5 5 3 1 4 5 

5 1 6 0 6 6 5 4 

5 2 0 2 2 4 6 3 

5 3 1 4 5 2 0 2 

5 4 2 6 1 0 1 1 

5 5 3 1 4 5 2 0 

5 6 4 3 0 3 3 6 

6 0 6 6 5 4 2 6 

6 1 0 1 1 2 3 5 

6 2 1 3 4 0 4 4 

6 3 2 5 0 5 5 3 

6 4 3 0 3 3 6 2 

6 5 4 2 6 1 0 1 

6 6 5 4 2 6 1 0 
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OALHD= 
0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 

0.0306 0.1531 0.1531 0.2959 0.4388 0.7245 0.1531 0.8673 

0.0510 0.2959 0.2959 0.5816 0.8673 0.4388 0.2959 0.7245 

0.0714 0.4388 0.4388 0.8673 0.2959 0.1531 0.4388 0.5816 

0.0918 0.5816 0.5816 0.1531 0.7245 0.8673 0.5816 0.4388 

0.1122 0.7245 0.7245 0.4388 0.1531 0.5816 0.7245 0.2959 

0.1327 0.8673 0.8673 0.7245 0.5816 0.2959 0.8673 0.1531 

0.1531 0.0306 0.1735 0.1735 0.3163 0.4592 0.7449 0.1735 

0.1735 0.1735 0.3163 0.4592 0.7449 0.1735 0.8878 0.0306 

0.1939 0.3163 0.4592 0.7449 0.1735 0.8878 0.0306 0.8878 

0.2143 0.4592 0.6020 0.0306 0.6020 0.6020 0.1735 0.7449 

0.2347 0.6020 0.7449 0.3163 0.0306 0.3163 0.3163 0.6020 

0.2551 0.7449 0.8878 0.6020 0.4592 0.0306 0.4592 0.4592 

0.2755 0.8878 0.0306 0.8878 0.8878 0.7449 0.6020 0.3163 

0.2959 0.0510 0.3367 0.3367 0.6224 0.9082 0.4796 0.3367 

0.3163 0.1939 0.4796 0.6224 0.0510 0.6224 0.6224 0.1939 

0.3367 0.3367 0.6224 0.9082 0.4796 0.3367 0.7653 0.0510 

0.3571 0.4796 0.7653 0.1939 0.9082 0.0510 0.9082 0.9082 

0.3776 0.6224 0.9082 0.4796 0.3367 0.7653 0.0510 0.7653 

0.3980 0.7653 0.0510 0.7653 0.7653 0.4796 0.1939 0.6224 

0.4184 0.9082 0.1939 0.0510 0.1939 0.1939 0.3367 0.4796 

0.4388 0.0714 0.5000 0.5000 0.9286 0.3571 0.2143 0.5000 

0.4592 0.2143 0.6429 0.7857 0.3571 0.0714 0.3571 0.3571 

0.4796 0.3571 0.7857 0.0714 0.7857 0.7857 0.5000 0.2143 

0.5000 0.5000 0.9286 0.3571 0.2143 0.5000 0.6429 0.0714 

0.5204 0.6429 0.0714 0.6429 0.6429 0.2143 0.7857 0.9286 

0.5408 0.7857 0.2143 0.9286 0.0714 0.9286 0.9286 0.7857 

0.5612 0.9286 0.3571 0.2143 0.5000 0.6429 0.0714 0.6429 

0.5816 0.0918 0.6633 0.6633 0.2347 0.8061 0.9490 0.6633 

0.6020 0.2347 0.8061 0.9490 0.6633 0.5204 0.0918 0.5204 

0.6224 0.3776 0.9490 0.2347 0.0918 0.2347 0.2347 0.3776 

0.6429 0.5204 0.0918 0.5204 0.5204 0.9490 0.3776 0.2347 

0.6633 0.6633 0.2347 0.8061 0.9490 0.6633 0.5204 0.0918 

0.6837 0.8061 0.3776 0.0918 0.3776 0.3776 0.6633 0.9490 

0.7041 0.9490 0.5204 0.3776 0.8061 0.0918 0.8061 0.8061 

0.7245 0.1122 0.8265 0.8265 0.5408 0.2551 0.6837 0.8265 

0.7449 0.2551 0.9694 0.1122 0.9694 0.9694 0.8265 0.6837 

0.7653 0.3980 0.1122 0.3980 0.3980 0.6837 0.9694 0.5408 

0.7857 0.5408 0.2551 0.6837 0.8265 0.3980 0.1122 0.3980 

0.8061 0.6837 0.3980 0.9694 0.2551 0.1122 0.2551 0.2551 

0.8265 0.8265 0.5408 0.2551 0.6837 0.8265 0.3980 0.1122 

0.8469 0.9694 0.6837 0.5408 0.1122 0.5408 0.5408 0.9694 

0.8673 0.1327 0.9898 0.9898 0.8469 0.7041 0.4184 0.9898 

0.8878 0.2755 0.1327 0.2755 0.2755 0.4184 0.5612 0.8469 

0.9082 0.4184 0.2755 0.5612 0.7041 0.1327 0.7041 0.7041 

0.9286 0.5612 0.4184 0.8469 0.1327 0.8469 0.8469 0.5612 

0.9490 0.7041 0.5612 0.1327 0.5612 0.5612 0.9898 0.4184 

0.9694 0.8469 0.7041 0.4184 0.9898 0.2755 0.1327 0.2755 

0.9898 0.9898 0.8469 0.7041 0.4184 0.9898 0.2755 0.1327 
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Figure 1. The Bivariate Projections among the 8 factors OA (49, 8, 7, 2) LHD  

depicting space-filling properties of the design 

 

 
Figure 2. MATLAB Code for the Construction of Orthogonal Array-Based Latin Hypercube Designs 

 

6.  DISCUSSION 

 

From our results, the following were observed as 

shown in the above results. Section 5 shows the 

construction of OA (49, 8, 7, 2)-LHD using Bush 

Construction Type I. OA (49, 8, 7, 2)-LHD contains 

49 rows (runs) with 8 columns (factors) .We have 

been able to construct OALHDs for 8 factors with 

the strength of 2. The mathematical theorem can 

work for designs of various runs and different 

number of factors. It works for s = 3, 5, 7, 9, 11, 13, 

15, … with factors, m = 4, 6, 8, 10, 12, 14, 16, … in 

a way that s is a prime number while m is even. The 

focus of this study is to consider s=7 to produce 8 

input variables.  We set U to be 0.5 to initialize the 

program in order to achieve the desired OALHDs.  

 

7.  CONCLUSION 

 

This study presents the construction of OALHDs 

from Bush Construction Type I. There are several 

techniques and criteria available for the 

construction of space-filling designs. These include 

the use of difference matrices, Galois fields and 
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orthogonal arrays among other existing techniques. 

The construction of OALHDs has been made easier 

by simplifying the rigorous mathematics involved 

into a computer program that runs in a twinkling of 

an eye. Our focus is to utilize the design to develop 

a borehole computer experiment for future 

research.The borehole model only comprises a 

univariate output and 8 input variables.  
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