
Anale. Seria Informatică. Vol. XVI fasc. 1 – 2018
Annals. Computer Science Series. 16th Tome 1st Fasc. – 2018

49

PPEERRFFOORRMMAANNCCEE EEVVAALLUUAATTIIOONN OOFF IIMMPPLLEEMMEENNTTAATTIIOONN LLAANNGGUUAAGGEESS OONN

CCOOGGNNIITTIIVVEE CCOOMMPPLLEEXXIITTYY OOFF DDIIJJKKSSTTRRAA AALLGGOORRIITTHHMM

Isah O. Mustapha 11, Stephen Olabiyisi
2
, Rasheed G. Jimoh

3
, Maruf O. Alimi

1

1
Department of Physical Sciences, College of Natural Sciences, Al-Hikmah University, Ilorin, Nigeria

2
Department of Computer Science and Engineering, Ladoke Akintola University of Technology,

Ogbomosho, Nigeria
3
Department of Computer Science, Faculty of Communication and Information Sciences, University of

Ilorin, Ilorin, Nigeria

Corresponding author: Maruf Alimi, moalimi@alhikmah.edu.ng

ABSTRACT: Maintainability is a key factor in measuring

the quality of developed software and it becomes important

due to dynamism of software. Partially, maintainability is a

function of source code understandability on the part of

developers. Therefore, cognitive complexity of software is

relevant to its maintainability. In fact it is not an

overemphasis to state that, quality of software in general

can hardly be control if the code is complex (Banker, Datar

and Zweig, 2009;francalanci and Merlo, 2010). Hence as a

result of strong impact that cognitive complexity has on the

software quality this research work investigates the effect

of some implementation languages on cognitive

complexity. Three earlier and recent implementation

languages were sampled in term of Procedural

Programming Languages and Object Oriented Languages

then implemented on a unique algorithm and appraised

using Procedural Cognitive Complexity Metric [P.C.C.M.]

and Multiparadigm Cognitive Complexity Metrics

[M.C.C.M.] respectively. The experiment results have

shown that among the procedural programming languages,

Fortran has least cognitive complexity with sixty six while

among Object Oriented Languages C++ has the least with

one hundred and thirty eight. Cross assessment of Fortran

and C++ using both [P.C.C.M.] and [M.C.C.M.] reveal that

Fortran has the least cognitive complexity among all the

implementation languages used. The research results has

shown that Fortran 77 is the best for implementation of

Dijkstra algorithm among the selected languages to have

the least cognitive complexity and has reaffirmed that

some languages are more appropriate for easy

understandability of source code than others.

KEYWORDS: Cognitime metric, Software Complexity,

Dijdstra Algorithm, Objict Programming Language,

Procedural Programming Language.

1. INTRODUCTION

Software Complexity is a measure of resources that is

expended on software during development and it is

factually relevant to many things like cost, processing

time, amount of storage facilities required by the

software, software testing, source code

understandability, maintainability and future

improvement of the software. Software complexity

analysis tends to provide meaningful information that

can be used to identify software structure, critical

software components, testing deficiencies, relative

risk area within software components and it is use to

give an insight into modules where possible program

improvements can be achieved ([L+94]).

The study of software complexity can serve as a tool

for prediction of program length, program

development time, number of bugs and future cost of

program maintenance. There are several metrics for

measuring the complexity of various software

characteristics and cognitive complexity is one of it,

each of the metric need to be used appropriately so

that it can actually quantify those software

characteristics which it meant to access.

Software Cognitive Complex refers to the degree to

which a system or component has a design or

implementation that is difficult to understand. It

measures the ease of comprehending the source code

for possible modification and improvement.

Programmer need to code their design in the form

that can be of least Cognitive complexity so that any

other developer can have easy access for modification

and improvement. This research work is an attempt to

investigate may be the choice of implementation

languages really has an impact on the ease of source

code comprehension.

2. OBJECTIVE

To evaluate the Cognitive Complexity of Dijkstra

Algorithm’s source code using different

implementation languages.

3. RELATED WORK

Software Complexity and The Programmer

Although characteristics of the program {program

characteristics include stylistics, specific

programming task, problem domain and

programming environment} should be a major yard

mailto:moalimi@alhikmah.edu.ng

Anale. Seria Informatică. Vol. XVI fasc. 1 – 2018
Annals. Computer Science Series. 16th Tome 1st Fasc. – 2018

50

stick for measuring specific program complexity but

at the same complexity measure should be design

with regards to the programmer and the source code

as well, Programmer becomes important here since

he perform the task of coding, debugging, testing,

documentation and modification, and the ease of been

able to do that, is relevant to his own expertise,

experience and comprehension of the need of the

user. It is not an over emphasis, to say that the

experimental factor like general knowledge of

programming language, techniques of algorithm,

specific knowledge of one application area or more

and even programming skills develop through

practice will make an expert to view factor of

programming task difficulty vary to that of a novices.

Actually complex algorithm may result in

implementation complexity but at the same time the

way an algorithm may appear complex to a novice, it

may not be like that in the view of an expert because

of his quick comprehension.

Software complexity metric should be able to serve

as a tool for prediction of program length, program

development time, number of bugs, difficulty that is

likely to be involved in comprehension of the

program and future cost of program maintenance.

Hence for developer to be able to use complexity

metric to predict future cost of program maintenance,

there is need for perfect comprehension of the source

code. Like we know life is dynamic and there may be

need for constant redesign of an algorithm to meet the

environmental challenges which may call for

recoding. In such situation, developers need to use

less complex source code that any other developer

can easily understand and readjust. An Algorithm,

which is complex to implement, requires skilled

developers, longer implementation time and has a

higher risk of implementation errors. Moreover,

complicated algorithms tend to demand specialist and

they do not necessarily work well when the problem

changes ([AN00]).

In order to achieve ease of software source code

comprehension, researchers in this domain have

continue to search for various parameters that are

relevant to source code comprehension and are

improving day in day out to ensure the possibility of

having unified metric for calculation of cognitive

complexity. In that regard, Chhabra, Aggarwal &

Singh, ([CAS03]) uses the analysis of distance

between module definition and modules call to

investigate human cognitive effort for source code

understandability. He explained the fact that when

module definition is far away from modules call then

mental searching is greater than when modules call is

at a shorter distance of line of code to module

definition (spatial analysis). He proposed a code

cognitive complexity by combining structural design

of control statement complexity of source code with

code”s spatial complexity. By comparism, his

research work shows a better analysis of difficulty of

comprehension of source code than lines of code

metric. Although his metric needs to be validated

over cross section of many cognitive metrics for a

collection of large program.

Vivanco and Jin ([VJ07]) also carried out a case

study research to determine a group of source code

metric that can be used to improve the performance

of predictive model for detection of component or

modules that are likely to have high cognitive

complexity or that are probably going to be

problematic. The contribution of the research is in the

area of making project managers and developers to

plan ahead and focus on corrective measure towards

software components that may be faulty.

Cafer, ([Caf10]) also formulated a cognitive

complexity metric which was used in this research

work, the model takes into consideration the

characteristics of object oriented programming

language as well as that of procedural programming

language hence the metric is applicable to both and

even applicable to multiparadigm programming

language. Comparative analysis of the research work

revealed that the metric perform well than some early

cognitive complexity metric since it was like an

hybridize of the early metric.

4. EXPERIMENT WITH DIJKSTRA

ALGORITHM

Dijkstra’s Algorithm is about finding the shortest

distance connecting two nodes (source and

destination node) in a graph. In this situation if we

order all the nodes in a graph with respect to their

closeness to the starting node then the shortest would

have been a member of the ordered list. Consequently

each of the ordered list can then be compare to detect

the one with minimum weight.

Summarily, Dijkstra’s algorithm get a solution to the

single-source shortest-paths problem on a weighted,

directed graph(digraph) K=(N, E) where the weight

of all edges are nonnegative. It is applicable to many

practical situation in life, for instance in Network

Routine, Marketing and Distribution of goods,

Transportation system of an organization, etc.

Therefore as a result of its applicability in resource

management and its relevance in decision-making,

this research uses this algorithm for implementation

to determine the appropriateness of programming

languages in addressing the issue of cognitive

complexity as stated above.

The complexity of Dijkstra Algorithm

implementation is researched in to, using six

programming languages. C++, C#, and Java were

selected from Object Oriented Language and Pascal,

C, and FORTRAN 77 were evaluated from

Anale. Seria Informatică. Vol. XVI fasc. 1 – 2018
Annals. Computer Science Series. 16th Tome 1st Fasc. – 2018

51

Procedural programming Language. The least

complex source code among object oriented language

was later recompare with the source code that has the

lowest complexity among the procedural languages.

The complexity appraisal were done using M.C.C.M.,

P.C.C.M. and C-procedural Metric.

4.1 METRIC INVOLVED

With reference to Cafer (2010), M.C.C.M was

calculated by adding the complexity of inherited class

(CIclass), complexity of distinct class (CDclass)

together with C-procedural Metric

i.e

MCM = CIclass + CDclass + C-procedural Metric

4.1.1 Calculations of Class Complexity (Cclass):

Calculations of Cclass was done base on the weight

or number of attributes, variables, objects, methods,

structures and Cohesion involved in the class.

i.e

Cclass = W(attributes) + W(variables) +

W(structures) + W(Object) - W(Cohesion)

i.e

Cclass = W(att) + W(var) + W(str) + W(Obj) -

W(Cohesion)

4.1.2 Weight of Structure:

The value of structure was derived from Basic

Control Structure (BCS) of cognitive weight unit

(CWU) as follows:

 Table 1. BCS for PCCM

Category BCS CWU

Sequence Sequence 1

Condition If-else

Switch

2

2

 sub-if

(in nested conditions)

1

Loop For 3

 for…in

while/do…while

sub-loop in nested loop

3

3

2

Functional

Activity

functional-call

alert/prompt/throw

event

recursion

2

2

2

3

Exception try.….catch 1

Table 2. BCS for MCCM

Category CWU

Sequence 1

Condition 2

Nested sub-condition 1

Loop 3

Nested sub-loop 2

Module call

Recursion

2

3

Exception 1

The value for Cohesion is derived from Number of

Method that uses an Attribute (MA) and Number of

Attributes that is used in a method (AM) as follows:

Cohesion = MA / AM

Calculation of CIclass:

Super Class was multiplied by the sum of the classes

that are derived from it.

While CDclass was calculated and added.

Calculation of P.C.C.M

 The following parameters were used for the

calculations of PCCM :

a. Number of arbitrarily named variable [ANV]

has four units weight.

b. Number of meaningfully Named variable

[MNV] has one unit weight

c. Number of operators has one unit per each.

d. Cognitive weights Unit [CWU] of Basic

Control Structures [BCS].

Then P.C.C.M adopted from Misra & Akman

([MA10]) is given as

PCCM = ∑∑ (((4*ANV + MNV) + Operator) *

CWU)

5. FINDINGS AND DISCUSSION

a) Analysis of Complexity of Dijkstra Algorithm

Using Object Oriented Programming Language with

the use of M.C.C.M is as follows:

The following tables display the analysis of Cognitive

Complexity of C++ implementation language on

Dijkstra Algorithm.

Table 3: Complexity Of Dijkstra Algorithm with

respect to C++

C
la

ss

A
tt

S
tr

v
a

r

o
b

j

M
A

A
M

C
o

h
es

io
n

C
o

m
p

le
x

it
y

T
O

T

C
o

m
p

le
x

it
y

Class

main

5 44 39 0 4 3 1.333 6.67 87

Anale. Seria Informatică. Vol. XVI fasc. 1 – 2018
Annals. Computer Science Series. 16th Tome 1st Fasc. – 2018

52

N
O

N
 C

la
ss

A
tt

S
tr

v
a

r

o
b

j

F
u

n
ct

io
n

C
o

h
es

io
n

C
o

m
p

le
x

it
y

T
O

T

C
o

m
p

le
x

it
y

C

proce

dural

 44 9 0 17

1.889 51 51

FOR C++:
MCM= C.I + C.D + C procedural

MCM= 0 + 87 + 51=138

The outcome of the above complexity analysis shows

that the cognitive complexity of the source code for

dijkstra algorithm is 138 when c++ is used for

implementation. It can also be seen that C++ has less

complexity because only one class was used.

The following tables display the analysis of Cognitive

Complexity of C# implementation language on

Dijkstra Algorithm.

Table 2: Complexity Of Dijkstra Algorithm With

Respect To C#

C
la

ss

A
tt

S
tr

v
a

r

4

M
A

A
M

C
o

h
es

io
n

C
o

m
p

le
x

it
y

T
O

T

C
o

m
p

le
x

it
y

Class

main

0 15 2 1 0 0 0 18

Class

Path

8 91 36 0 5 5 1 134 152

N
O

N

C
la

ss

A
tt

S
tr

v
a

r

o
b

j

F
u

n
ct

io
n

C
o

h
es

io
n

C
o

m
p

le
x

it
y

T
O

T

C
o

m
p

le
x

it
y

C

proce

dural

 106 12 1 37 3.08 116 116

FOR C#:
MCM= C.I + C.D + C procedural

MCM= 0 + (18+134) + 116 = 152 + 116 = 268.

The outcome of the above complexity analysis shows

that the cognitive complexity of the source code for

Dijkstra Algorithm is 268 when c# is used for

implementation. Although C# uses two classes in it

implementation but has less attributes and string

when compare with java.

The following tables display the analysis of Cognitive

Complexity of JAVA implementation language on

Dijkstra Algorithm.

Table 5: Complexity Of Dijkstra Algorithm With

Respect To JAVA

C
la

ss

A
tt

S
tr

V
a

r

o
b

j

M
A

A
M

C
o

h
es

io
n

C
o

m
p

le
x

it
y

T
O

T

C
o

m
p

le
x

it
y

Class

main

0 15 3 2 0 0 0 20

Class

Path

9 93 39 1 9 9 1 141 161

N
O

N
 C

la
ss

A
tt

S
tr

v
a

r

O
b

j

F
u

n
ct

io
n

C
o

h
es

io
n

C
o

m
p

le
x

it
y

T
O

T

C
o

m
p

le
x

it
y

C

proce

dural

 108 15 3 30 2 154 154

FOR JAVA:
MCM= C.I + C.D + C procedural

MCM= 0 + (20+141) + 154 = 161 + 154 = 315.

The outcome of the above complexity analysis shows

that the cognitive complexity of the source code for

dijkstra algorithm is 315 when java is used for

implementation. It also shows that Java has the

largest number of attributes and string when compare

with other object oriented languages used here.

Table 6: Result Of M.C.C.M On Object Oriented

Programming Languages

Programming

Language

M.C.C.M results

C ++ 138

C # 268

JAVA 315

This table shows that out of all the three Object

Oriented Programming Languages, C++ has the least

complexity and that C# has almost double the

complexity of C++ while Java is almost three times

the complexity of C
++

 . This is as a result of the fact

that C# and Java source code in the implementation

involved the use of a distinct class, this is evidence

from the calculation.

b) Analysis of Cognitive Complexity of Dijkstra

Algorithm on Procedural Programming Languages is

as follows:

Table 7: Result of M.C.C.M on Procedural

Programming Languages is as follows

Programming Language M.C.C.M results

FORTRAN 66

PASCAL 67

C 77

Anale. Seria Informatică. Vol. XVI fasc. 1 – 2018
Annals. Computer Science Series. 16th Tome 1st Fasc. – 2018

53

Table 5 shows the summary of the computational

analysis of M.C.C.M on Procedural Programming

Language, this is to say that it depict what Table 4

has shown interm of Object Oriented Language for

procedural programming language.

Table 8: Result of P.C.C.M for Procedural

Programming Languages

Programming Language PCCM

FORTRAN 784

PASCAL 815

C 1130

P.C.C.M result has shown in table 6 above, when

compare with table 5 where M.C.C.M is used, shows

that more values are attached to each procedural

programming languages than has depicted by

M.C.C.M in table 5, this imply that PCCM gives

more details about some other feature of the

procedural languages than has depicted in table 5.

Although the result of the two metrics still consider

Fortran to be the least in the complexity analysis.

Table 9: Comparism of the source code of Fortran 77

and C++ Language Cognitive Complexity

Programming Language M.C.M result

Fortran 66

C++ 138

After the use of M.C.C.M to analyse the cognitive

complexity of Object Oriented Programming

Languages and P.C.C.M for Procedural Programming

Languages. Fortran 77 which has the least complexity

in procedural languages was compared with C++ that

also has the least complexity among Object Oriented

Programming Languages. Using M.C.C.M for both

Fortran 77 and C++ , Table 7 depict the result of their

comparative analysis.

Figure 1: Graph Showing Software Cognitive

Complexity between C++ and Fortran

At a glance, table 7 and figure 1 distinctly depict that

Fortran source code even when compare with object

oriented languages is the one that has the least

Cognitive Complexity.

6. CONCLUSION

This research work evaluated the Cognitive

Complexity of Dijkstra Algorithm using software

complexity measure on six different programming

languages implementation and make a conclusion

from the results that the choice of programming

language affects the cognitive complexity of Dijkstra

Algorithm because Fortran language according to

result is the best for implementation of Dijkstra

algorithm to have the least cognitive complexity.

Generally, Fortran 77 and Pascal though they are old

languages and not commonly used in large companies

today but by this research work they are highly

efficient in implementing Dijkstra Algorithm. This

research has also revealed the relevance of earlier

implementation languages in the recent software

development since some earlier algorithms are still in

use today.

REFERENCES

[AN00] Akkanen J., Nurminen J. K. - Case-

study of the evolution of routing

algorithms in a network planning tool,

J. Syst. Software. 2000, 58, 181-198.

[BDZ10] Banker R. D., Datar S. M., Zweig D. -

Software Complexity and

Maintainability, CiteSeer Scientific

Literature Digital Library and Search

Engine. 2010.

[Caf10] Cafer F. - An Estimating Complexity of

software codes. M.Sc. Thesis, Atilim

University, 2010.

[Chh11] Chhabra J. K. - Code Cognitive

Complexity. Proceedings of the World

Congress of Engineering 2011 Vol II,

WCH 2011, London, U.K., 2011.

[CAS03] Chhabra J. K., Aggarwal K. K., Singh

Y. - Code and data spatial complexity.

Two important software

understandability, Measures,

information and software Technology,

2003,Vol 45, no 8, pp. 539-546.

[FM10] Francalanci C., Merlo F. - The Impact

of Complexity on Software Design

Quality and Cost: An Exploratory

Anale. Seria Informatică. Vol. XVI fasc. 1 – 2018
Annals. Computer Science Series. 16th Tome 1st Fasc. – 2018

54

Empirical Analysis of Open Source

Application (last accessed 16.30, 2010).

Available at:

http://is2.lse.ac.uk/asp/aspecis/20080122

.p, df

[L+94] Lee A. T., Gunn T., Pharm T., Ricaldi

R. - Software Analysis Handbook:

Software Complexity and Software

Reliability Estimation and Prediction.

1994.

[MA10] Misra S., Akman I. - Unified

Complexity Metric: A measure of

Complexity, Proceeding of National

Academy of Sciences Section A. 2010.

[VJ07] Vivanco R., Jin D. - Improving

Predictive Models of Cognitive

Complexity Using An Evolutionary

Computational Approach: a case study.

National Research Council Canada.

2007.

http://is2.lse.ac.uk/asp/aspecis/20080122.p
http://is2.lse.ac.uk/asp/aspecis/20080122.p

