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ABSTRACT: Nonlinear Models are generally classified 

as intrinsically nonlinear and intrinsically linear based on 

the specification of the errors. This study was aimed at 

estimating the parameters of Cobb-Douglas production 

function with additive and multiplicative errors using the 

classical and Bayesian approaches. The classical 

nonlinear method considered is the Gauss-Newton 

iterative Method while the Bayesian estimation was 

carried out using the Metropolis-within-Gibbs with 

independent normal-Gamma prior. For the classical, the 

results showed that the estimates of the parameters of the 

Cobb-Douglas function with additive errors performed 

better than those for the multiplicative errors. However, 

similar estimates were obtained for both multiplicative 

and additive errors for the Bayesian approach. Overall, 

the Bayesian method performed better than the classical 

approach.  

KEYWORDS: Cobb-Douglas Production function, 

Gauss-Newton Method, Normal-Gamma Prior, MCMC. 

 

1. INTRODUCTION 

 

The Cobb-Douglas production function was first 

introduced by Charles W. Cobb and Paul H. Douglas 

([CD28]), although Knut Wicksell (1851-1926) 

reported the production output determined by the 

amount of labor involved and the amount of capital 

invested in the different industries of the world as 

the fairly universal law of production; on the 

contrary Cobb and Douglas ([CD28]) tested against 

this proposition by revealing that coefficients of two 

factors (labour and capital) considered were not 

constant over time or between the same sectors of 

the economy, These two factors of Cobb-Douglas 

aggregate production function preferred in the 

specification of growth theory were mentioned in the 

seminal contribution of Solow ([Sol56]). 

Houthakker ([Hou55]) showed how to aggregate out 

a Cobb-Douglas production from underlying 

Leontief production functions when their 

coefficients are jointly Pareto distributed. Jones 

([Jon05]) partially built on this to show that a global 

Cobb-Douglas production function could arise from 

general constant returns to scale production function. 

Hajkova and Hurnik ([HH07]) reported that the 

application of the Cobb-Douglas production function 

was unreliable for the Czech economy when the 

labour share gradually increases for a more general 

form of production function. The error terms are 

usually assumed to be uncorrelated with mean zero 

and constant variance. The classical procedures in 

nonlinear regression are assessed with long-run 

properties under hypothetical repeated sampling, if 

the objective is the parameter estimation, then the 

aim is to obtain an estimate whose distribution is 

“close” to the true value. However, confidence 

intervals are not so simple to interpret.  Berger and 

Wolpert ([BW88]) introduced Bayesian approach to 

nonlinear model and confirmed by Royall ([Roy97]) 

that a true likelihood approach is difficult to 

calibrate since all approaches based on classical 

criteria invalidate this likelihood property. In 

contract, another appealing characteristic is that the 

Bayesian approach to inference and interpretability 

may be derived via decision theory to be appropriate 

in nonlinear model. 

Other researchers including Hoque ([Hoq91]), Bhatti 

([Bha93]), Baltagi ([Bal96]), Bhatti and Owen 

([BO96]), Bhatti ([Bha97]), Bhatti et al. ([BKC98]), 

Ingene and Lusch ([IL99]), Mok ([Mok02]), Hossain 

et al. ([HBA04]), Hajkova and Hurnik ([HH07]), 

Prajneshu ([Pra08]), Antony ([Ant09]), and Hossain 

et al. ([HA10]), amongst others have used linear 

regression models to measure the log-linear Cobb-

Douglas (C-D) type production processes. 

This paper was aimed at estimating the parameters 

of C-DP function with multiplicative and additive 

errors using the classical and Bayesian approaches. 

The rest of this paper is organised as follows; section 

2 discusses the models of Cobb-Douglas production 

function with additive and multiplicative errors, the 

theoretical concepts of the methods employed 

namely, classical and Bayesian methods are briefly 

discussed, empirical illustrations, findings and 

discussions follow in Section 4 and Section 5 

concludes the paper. 
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2. MODEL 

 

Consider 𝑦𝑖 as a set of outputs of a production 

process, i = 1, 2, …, N, 𝑋1, 𝑋2 are two factors of 

production, capital  and labour  input respectively. 

𝛽0 is constant, 𝛽1 and 𝛽2   are the outputs of 

elasticity of capital and labour, coefficients of these 

factors, where 𝑢𝑖 is the error terms (multiplicative 

error and additive error). Cobb Douglas Model in the 

choice of error is as follows: 

Cobb-Douglas Regression Model with 

Multiplicative Error (C-DME) term is given as, 

 

𝑦𝑖 = 𝛽0𝑋1
𝛽1𝑋2

𝛽2𝑒𝑢𝑖                           (1) 

 

Equation (1) is nearly always treated as a linear 

relationship by making a logarithmic transformation, 

which yields: 

    

𝑌∗ = 𝛽∗
0 + 𝛽1𝑋

∗
1 + 𝛽2𝑋

∗
2 + 𝑢𝑖         (2) 

 

Where 𝛽∗
0, is transformed intercept 𝑌∗, 𝑋∗

1,  𝑋∗
2 

are the transformed variables in eqn (1) 

Cobb-Douglas Regression Model with Additive 

Error (C-DAE) term. 

 

𝑦𝑖 = 𝛽0𝑋1
𝛽1𝑋2

𝛽2 + 𝑢𝑖           (3)    

 

In the case of equation (3), the minimization of, 

∑ 𝑢𝑖
2

𝑖=1 is no longer a simple linear estimation 

problem. To estimate the production function, we 

need to know different types of non-linear 

estimation. In non-linear model it is not possible to 

give a closed form expression for the estimates as a 

function of the sample values, i.e., the likelihood 

function or sum of squares cannot be transformed so 

that the normal equations are linear. The idea of 

using estimates that minimize the sum squared errors 

is a data-analytic idea, not a statistical idea; it does 

not depend on the statistical properties of the 

observations (see [Chr01]). In most situation non-

linear estimation problem can be solved by 

minimizing the error sum square estimation method 

using any of the optimization method (see 

[GQ978]). Gauss-Newton method is one of the 

methods which is used to estimate the parameters of 

model (3) ([HM15]).  

By factoring out  𝛽0𝑋1
𝛽1𝑋2

𝛽2 and take the natural 

log of equation (3), gives  

  

𝑌∗∗ = 𝛽∗∗
0 + 𝛽1𝑋

∗∗
1 + 𝛽2𝑋

∗∗
2 + 𝑢∗        (4) 

 

where 𝛽∗∗
0 is transformed intercept, 𝑌∗∗, 𝑋∗∗

1and 

𝑋∗∗
2 are also the transformed variables in equation 

(3). 

 

3. METHODOLOGY 

 

 3.1. Gauss Newton Method 
 

The Gauss Newton Method is one of the classical 

ways of estimating the parameters of nonlinear 

models, therefore, the procedures stated below are 

the universal steps of estimating any form of 

nonlinear model either intrinsically nonlinear or 

intrinsically linear. 

Suppose, we want to estimate a nonlinear model of 

the form 

           

𝑦𝑖 = 𝑓(𝑋𝑖, 𝛽) + 𝑢𝑖      𝑖 = 1,2,… , 𝑁          (5) 

 

Where; 𝑦𝑖 is response variable, 𝑓(𝑋𝑖 , 𝛽) is the 

nonlinear form comprising of the explanatory 

variable and the coefficient of the model, and, the 

error component with mean 0 and variance 

𝜎2, 𝑢𝑖 ~ 𝑁(0, 𝜎2) 
The matrix form of the model in equation (4) can be 

expressed as; 

 

𝑌 = 

[
 
 
 
 
𝑦1

𝑦2.
..

𝑦𝑁]
 
 
 
 

,  𝑋 = 

[
 
 
 
 
𝑋11 𝑋21 𝑋31

𝑋12 𝑋22 𝑋23.
..

𝑋1𝑁

.

..
𝑋2𝑁

.

..
𝑋3𝑁]

 
 
 
 

, 𝛽 = [

𝛽0

𝛽1

𝛽2

], and 

𝑈 =  [

𝑢1.
.
.

𝑢𝑁

] 

 

The Gauss Newton method begins by expanding 

𝑓(𝑋𝑖 , 𝛽) =  𝑓𝑖(𝛽) using Taylor’s series up to the first 

derivative around a set of initial values, 𝛽𝑗
0𝑖 = (𝛽0

0,

𝛽1
0, 𝛽2

0) and representing the required parameters 

appropriately. Set 𝜆𝑗 = 𝛽𝑗  −  𝛽𝑗
0, 𝑌𝑖

0= 𝑓𝑖
0 =

𝑓(𝑥𝑖 , 𝜆𝑗
0 ), and set initial values 𝜆𝑗

0 = 𝛽0
0,

𝛽1
0, 𝛽2

0
.  

Using the OLS method, we obtain the OLS estimates 

by 

 

𝜆̂ =  (𝑍0′
𝑍0)

−1
𝑍0′

(𝐷), 
 

Where; D = Y - 𝑓0, since, 𝜆0
𝑗 = 𝛽1

𝑗  −  𝛽𝑗
0
, the 

revised estimate of 𝛽𝑗 is 𝛽1
𝑗. 

Hence, 𝛽1
𝑗 = 𝜆̂𝑗 + 𝛽𝑗

0
, the process is repeated to 

obtained desired estimates as a general rule. 

 

3.2. Bayesian Approach 

 

The Markov Chain Monte Carlo technique (MCMC) 

is employed by Metropolis-Hasting algorithm. 
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Procedures for analyzing the “Cobb-Douglas with 

Multiplicative and additive error term are the same. 

 

3.3. The Likelihood Function and Prior (C-DME) 
 

The log normal regression mean (𝑋∗𝛽∗) with error 

precision (ℎ =  
1

𝜎2) , random variable ln(y) as the 

data information using the multivariate Normal 

density, the log likelihood  can be given as:     

 

 

𝑃(𝑦∗|𝛽, ℎ) =  
ℎ

𝑁
2

(2𝜋)
𝑁
2

 𝑒𝑥𝑝 [−
ℎ

2
(𝑦∗ − 𝑋∗𝛽)′(𝑦∗ −

 𝑋∗𝛽)]                         (6) 

 

The previous information about a study before 

seeing the data denoted by independent prior 

𝑃(𝛽, ℎ). Given
 
𝑃(𝛽, ℎ) = 𝑃(𝛽). 𝑃(ℎ) with 𝑃(𝛽) 

being Normal and  𝑃(ℎ) being Gamma 

      

𝑃(𝛽) =  
1

(2𝜋)
𝑁
2

 |𝑉|
1
2 𝑒𝑥𝑝 [−

1

2
(𝛽 − 𝛽)

′
𝑉−1(𝛽

− 𝛽)] 

and    

𝑃(ℎ) =  𝐶−1
𝐺ℎ

𝑣−2
2 exp (

−ℎ𝑣

2𝑠−2
) 

 

Where, 𝐶𝐺 is the integrating constant for Gamma, It 

is deduced that: 𝐸[𝛽|𝑦∗] =  𝛽  is the prior mean of 𝛽   

and 𝑉𝑎𝑟(𝛽|ℎ) =  𝑉 is the prior covariance matrix of 

𝛽 with the mean of  h as  𝑠−2and  𝑣 degree of 

freedom. 

 

3.4. The Posterior (C-DME) 

 

The posterior is proportional to the prior and the 

likelihood, which is also the information obtained 

after seeing the data and some mathematical 

techniques being applied, usually denoted 

 

𝑃(𝛽, ℎ|𝑦) =  
ℎ

𝑁
2

(2𝜋)
𝑁
2

 𝑒𝑥𝑝 [−
ℎ

2
(𝑦∗ − 𝑋∗𝛽)′(𝑦∗ −

 𝑋∗𝛽)]  𝑥 
1

(2𝜋)
𝑁
2

 |𝑉|
1

2 𝑒𝑥𝑝 [−
1

2
(𝛽 − 𝛽)

′
𝑉−1(𝛽 −

 𝛽)]  𝑥  𝐶−1
𝐺ℎ

𝑣−2

2 exp (
−ℎ𝑣

2𝑠−2)      

             

𝑃(𝛽, ℎ|𝑦)  ∝ 

 𝑒𝑥𝑝 [−
1

2
{ℎ(𝑦∗ − 𝑋∗𝛽)′(𝑦∗ − 𝑋∗𝛽)]  

+[(𝛽 − 𝛽)
′
𝑉−1(𝛽 − 𝛽)}]  𝑥 ℎ

𝑁+𝑣−2

2 exp (
−ℎ𝑣

2𝑠−2)    (7) 

 

this joint posterior density for 𝛽 and h does not take 

any well-known distributional form; so it cannot be 

solved analytically but only through a posterior 

simulation method. 

By ignoring the terms that do not involve 𝛽  in 

equation (7) we obtain, 

 

𝑃(𝛽|𝑦∗, ℎ) ∝ 𝑒𝑥𝑝 [−
1

2
{(𝛽 − 𝛽̅)

′
𝑉̅−1(𝛽 − 𝛽̅)}]  (8) 

 

Which implies that 𝛽|𝑦∗, ℎ ~ 𝑁(𝛽̅, 𝑉̅) a Multivariate 

Normal density, 

where, 𝑉̅ =  (𝑉−1 + ℎ𝑋∗′𝑋∗)−1 and 𝛽̅ =

 𝑉̅(ℎ𝑋∗′
𝑌∗ + 𝑉−1𝛽) 

Similarly, by treating equation (7) as a function of h 

ignoring terms that do not involve h we can obtain 

 

𝑃(ℎ|𝑦∗, 𝛽) ∝ ℎ
𝑁+𝑣−2

2  𝑒𝑥𝑝 [−
ℎ

2
{(𝑦∗ − 𝑋∗𝛽)′(𝑦∗ −

 𝑋∗𝛽) + 𝑣𝑠2}]            (9) 

 

This also implies that ℎ|𝑦∗, 𝛽~ 𝐺(𝑠̅−2, 𝑣̅),  a Gamma 

density,  

where, 𝑣̅ = 𝑁 + 𝑣 and 𝑠−2 =

 
(𝑦∗− 𝑋∗𝛽)′(𝑦∗− 𝑋∗𝛽) + 𝑣𝑠2 

𝑣̅
 

The formulae of equation (8) and (9) look familiar to 

those of the conjugate normal-gamma priors now but 

it does not relate directly to the posterior of interest, 

since 

 

𝑃(𝛽, ℎ|𝑦∗) ≠ 𝑃(𝛽|𝑦∗, ℎ) 𝑥 𝑃(ℎ|𝑦∗, 𝛽).  

 

Therefore, the conditional posteriors in equation (8) 

and (9) do not directly tells everything about the 

posterior, 𝑃(𝛽, ℎ|𝑦∗). Nevertheless, there is a 

posterior simulator called the Metropolis- Within-

Gibbs which makes use of the conditional posteriors 

like (8) and (9) to produce random draws 𝛽(𝑠) and 

ℎ(𝑠) for 1,2,...,s S which can be averaged to 

produce estimates of the posterior properties just as 

the Monte Carlo integration. 

 

3.5. The Likelihood Function and Prior (C-DAE) 

 

𝑃(𝑦∗∗|𝛽, ℎ) =  
ℎ

𝑁
2

(2𝜋)
𝑁
2

 𝑒𝑥𝑝 [−
ℎ

2
(𝑦∗∗ − 𝑋∗∗𝛽)′(𝑦∗∗ −

 𝑋∗∗𝛽)]                                   (10)

 
 

The information at hand about a particular study 

before seeing the data, denoted by the independent 

prior by 𝑃(𝛽, ℎ) 
  

 

𝑃(𝛽) =  
1

(2𝜋)
𝑁
2

 |𝑉|
1
2 𝑒𝑥𝑝 [−

1

2
(𝛽 − 𝛽)

′
𝑉−1(𝛽

− 𝛽)] 
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and     

𝑃(ℎ) =  𝐶−1
𝐺ℎ

𝑣−2
2 exp (

−ℎ𝑣

2𝑠−2
) 

𝑃(𝛽, ℎ|𝑦∗∗)  ∝  𝑒𝑥𝑝 [−
1

2
{ℎ(𝑦∗∗ − 𝑋∗∗𝛽)′(𝑦∗∗

− 𝑋∗∗𝛽) 

+ (𝛽 − 𝛽)
′
𝑉−1 (𝛽

− 𝛽)}]  𝑥 ℎ
𝑁+𝑣−2

2 exp (
−ℎ𝑣

2𝑠−2
) 

 

3.6. Posterior (C-DAE) 
 

𝑃(𝛽, ℎ|𝑦∗∗) =  
ℎ

𝑁
2

(2𝜋)
𝑁
2

 𝑒𝑥𝑝 [−
ℎ

2
(𝑦∗∗ − 𝑋∗∗𝛽)′(𝑦∗∗ −

 𝑋∗∗𝛽)]  𝑥 
1

(2𝜋)
𝑁
2

 |𝑉|
1

2 𝑒𝑥𝑝 [−
1

2
(𝛽 − 𝛽)

′
𝑉−1(𝛽 −

 𝛽)]  𝑥  𝐶−1
𝐺ℎ

𝑣−2

2 exp (
−ℎ𝑣

2𝑠−2)                   (11) 

 

By ignoring the terms that do not involve 𝛽 we 

obtain, 

      

𝑃(𝛽|𝑦∗∗, ℎ) ∝ 𝑒𝑥𝑝 [−
1

2
{(𝛽 − 𝛽̅)

′
𝑉̅−1(𝛽 − 𝛽̅)}]        

                              (12) 

 

Which implies that 𝛽|𝑦∗∗, ℎ ~ 𝑁(𝛽̅, 𝑉̅) a 

Multivariate Normal density, 

where, 𝑉̅ =  (𝑉−1 + ℎ𝑋∗∗′𝑋∗∗)−1 and 𝛽̅ =

 𝑉̅(ℎ𝑋∗∗′
𝑌∗∗ + 𝑉−1𝛽) 

Similarly, by treating equation (11) as a function of 

h ignoring terms that do not involve h we can obtain 

 

𝑃(ℎ|𝑦∗∗, 𝛽) ∝ ℎ
𝑁+𝑣−2

2  𝑒𝑥𝑝 [−
ℎ

2
{(𝑦∗∗ −

 𝑋∗∗𝛽)′(𝑦∗∗ − 𝑋∗∗𝛽) + 𝑣𝑠2}]                     (13) 

 

This also implies that ℎ|𝑦∗∗, 𝛽~ 𝐺(𝑠̅−2, 𝑣̅),  a 

Gamma density, 

where, 𝑣̅ = 𝑁 + 𝑣 and  

𝑠−2 = 
(𝑦∗∗ − 𝑋∗∗𝛽)′(𝑦∗∗ − 𝑋∗∗𝛽) + 𝑣𝑠2 

𝑣̅
 

The formulae of equation (12) and (13) look familiar 

to those of the conjugate normal-gamma priors now 

but it does not relate directly to the posterior of 

interest, since 

 

𝑃(𝛽, ℎ|𝑦∗∗) ≠ 𝑃(𝛽|𝑦∗∗, ℎ) 𝑥 𝑃(ℎ|𝑦∗∗, 𝛽).  

 

Therefore, the conditional posteriors in equation (12) 

and (13) do not directly tells everything about the 

posterior, 𝑃(𝛽, ℎ|𝑦∗∗) .Nevertheless, there is a 

posterior simulator called the Metropolis- Within-

Gibbs which makes use of the conditional posteriors 

like (12) and (13) to produce random draws 𝛽(𝑠) and 

ℎ(𝑠)for 1,2,...,s S which can be averaged to 

produce estimates of the posterior properties just as 

the Monte Carlo integration. 

 

4. EMPIRICAL ILLUSTRATIONS 

 

The data used for analysis under this study were 

simulated using Monte Carlo simulation technique. 

The explanatory variables is drawn independently 

from a uniform [0,1] distribution, 𝑋𝑖𝑗  ~ 𝑈[0,1], 𝑖 =

0,1,2 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑁. Values fixed for the 

regression coefficients 𝛽𝑖, 𝑖 = 0,1,2 i.e 𝛽0 =
15, 𝛽1 = 0.85, 𝛽2 = 0.15. The error component 

drawn from a standard normal distribution, 

𝜀𝑗 ~ 𝑁[0,1], incorporated into non- linear Cobb-

Douglas model to obtain the response variable (data 

of interest) using four (4) different sample sizes 

N=30, N=50, N=100, N=150 setting up a 10,000 

iterations and a burning of 1000 to attain 

convergence of the posterior estimates. 
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Table 1: The Additive and Multiplicative Error Based Cobb-Douglas Production Functions 

 ADDITIVE-ERROR-BASED MULTIPLICATIVE-ERROR-BASED 

 Prior (SD) GNM   

(S.E) 

Posterior 

(S.D) 

NSE GNM      

(S.E) 

Posterior 

(S.D) 

NSE 

                                                           N=50 

𝛽0 
(15) 

0.001 

(500.40) 

15.445690 

(0.446410) 

15.815700 

(0.058995) 

0.000622 10.879500 

(0.221240) 

10.882991 

(0.056498) 

0.000595 

 
𝛽1 

(0.85) 

0.005 

(90.7) 

0.845610 

(0.046720) 

0.934454 

(0.035239) 

0.000372 0.829240 

(0.119940) 

0.829921 

(0.030103) 

0.000317 

𝛽2 
(0.15) 

0.01 

(449.097) 

0.186740 

(0.026600) 

0.160182 

(0.045231) 

0.000477 0.18113 

(0.091720) 

0.180948 

(0.023506) 

0.000247 

                                                           N=100 

𝛽0 
(15) 

0.001 

(500.40) 

14.749440 

(0.289740) 

15.69809 

(0.042246) 

0.000445 12.723619 

(0.170030) 

12.726243 

(0.040442) 

0.000426 

𝛽1 
(0.85) 

0.005 

(90.7) 

0.832800 

(0.030560) 

1.027199 

(0.027920) 

0.000294 0.791700 

(0.108620) 

0.792139 

(0.025392) 

0.000267 

𝛽2 
(0.15) 

0.01 

(449.097) 

0.128510 

(0.015610) 

0.243364 

(0.028505) 

0.000301 0.174650 

(0.084730) 

0.174478 

(0.020215) 

0.000213 

                                                           N=250 

𝛽0 
(15) 

0.001 

(500.40) 

15.038910 

(0.221834) 

15.67601 

(0.027615) 

0.000291 13.243674 

(0.107760) 

13.245939 

(0.025597) 

0.000269 

𝛽1 
(0.85) 

0.005 

(90.7) 

0.841602 

(0.020145) 

0.837894 

(0.018495) 

0.000195 0.806600 

(0.068750) 

0.806481 

(0.016405) 

0.000173 

𝛽2 
(0.15) 

0.01 

(449.097) 

0.159087 

(0.009644) 

0.159936 

(0.014683) 

0.000155 0.157030 

(0.062110) 

0.157264 

(0.014474) 

0.000152 

                                                           N=500  

𝛽0 
(15) 

0.001 

(500.40) 

14.976400 

(0.137190) 

13.573850 

(0.018704) 

0.000197 15.170155 

(0.084730) 

15.17211 

(0.017879) 

0.000186 

𝛽1 
(0.85) 

0.005 

(90.7) 

0.841800 

(0.014130) 

0.759519 

(0.011394) 

0.000120 0.845710 

(0.04892) 

0.845861 

(0.010812) 

0.000114 

𝛽2 
(0.15) 

0.01 

(449.097) 

0.148060 

(0.007060) 

0.132379 

(0.011079) 

0.000117 0.176550 

(0.049910) 

0.176499 

(0.009809) 

0.000103 

 

5. FINDINGS AND DISCUSSIONS 

 

Table shows the estimates obtained using the Cobb-

Douglas production function with additive error and 

multiplicative error term. The priors used are 0.001 

(500.40), 0.005 (90.7), 0.01 (449.097) under the 

various sample sizes of study with the standard 

errors (SD) in bracket, a metropolis Hasting Within 

Gibbs algorithm was used with the Normal-Gamma 

prior to obtain the posterior estimates as recorded 

above using the additive and multiplicative error 

models. The result shows that the multiplicative 

error model behaves better than the additive error 

model. 

Furthermore, the nuisance parameter 𝛽0 shows a 

fluctuated and unsteady behaviour by producing 

values that are close to the true values for additive 

error model using the Gauss-Newton method while 

the estimates are far from the true values as sample 

size increased for the multiplicative error model.  

The estimates obtained by the Bayesian method are 

also closer to the true parameter values for the 

additive model than for the multiplicative model. In 

general, the parameter estimates from additive 

model are better than those produced by the 

multiplicative model for both classical and Bayesian 

approaches. 

Lastly, the standard error of the GNM and the 

Numerical Standard Error of the posterior decrease 

consistently as sample size increases, however, the 

standard errors of the Bayesian approach are 

generally better than those of the classical approach.  

 

6. CONCLUSION 
 

This paper has been able to achieve the objectives by 

checking which model is more appropriate between 

the Cobb-Douglas production function with additive 

error term and the Cobb-Douglas production 

function with multiplicative error term, the error 

model in the additive behaved better than the 

multiplicative error model. Parameters estimated for 

the two scenarios of Cobb-Douglas production 

function (i.e. multiplicative error and additive error 

term) using the Bayesian approach and Frequentist 

approach, the results made it obvious that the 



Anale. Seria Informatică. Vol. XVII fasc. 1 – 2019 
Annals. Computer Science Series. 17th Tome 1st  Fasc. – 2019 

 

14 

Bayesian approached is preferred in using the Cobb-

Douglas production function based on the minimal 

numerical standard errors produced in between the 

two approaches under investigation. The level of 

efficiency in the Bayesian estimation as sample size 

increases is shown as the numerical standard errors 

decreased with increase in sample sizes. 
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