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ABSTRACT: Nonlinear Models are generally classified
as intrinsically nonlinear and intrinsically linear based on
the specification of the errors. This study was aimed at
estimating the parameters of Cobb-Douglas production
function with additive and multiplicative errors using the
classical and Bayesian approaches. The classical
nonlinear method considered is the Gauss-Newton
iterative Method while the Bayesian estimation was
carried out using the Metropolis-within-Gibbs with
independent normal-Gamma prior. For the classical, the
results showed that the estimates of the parameters of the
Cobb-Douglas function with additive errors performed
better than those for the multiplicative errors. However,
similar estimates were obtained for both multiplicative
and additive errors for the Bayesian approach. Overall,
the Bayesian method performed better than the classical
approach.

KEYWORDS: Cobb-Douglas Production function,
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1. INTRODUCTION

The Cobb-Douglas production function was first
introduced by Charles W. Cobb and Paul H. Douglas
([CD28]), although Knut Wicksell (1851-1926)
reported the production output determined by the
amount of labor involved and the amount of capital
invested in the different industries of the world as
the fairly universal law of production; on the
contrary Cobb and Douglas ([CD28]) tested against
this proposition by revealing that coefficients of two
factors (labour and capital) considered were not
constant over time or between the same sectors of
the economy, These two factors of Cobb-Douglas
aggregate production function preferred in the
specification of growth theory were mentioned in the
seminal  contribution of Solow ([Sol56]).
Houthakker ([Hou55]) showed how to aggregate out
a Cobb-Douglas production from underlying
Leontief  production  functions when their
coefficients are jointly Pareto distributed. Jones
([Jon05]) partially built on this to show that a global
Cobb-Douglas production function could arise from
general constant returns to scale production function.
Hajkova and Hurnik ([HHO7]) reported that the

application of the Cobb-Douglas production function
was unreliable for the Czech economy when the
labour share gradually increases for a more general
form of production function. The error terms are
usually assumed to be uncorrelated with mean zero
and constant variance. The classical procedures in
nonlinear regression are assessed with long-run
properties under hypothetical repeated sampling, if
the objective is the parameter estimation, then the
aim is to obtain an estimate whose distribution is
“close” to the true value. However, confidence
intervals are not so simple to interpret. Berger and
Wolpert ([BW88]) introduced Bayesian approach to
nonlinear model and confirmed by Royall ([Roy97])
that a true likelihood approach is difficult to
calibrate since all approaches based on classical
criteria invalidate this likelihood property. In
contract, another appealing characteristic is that the
Bayesian approach to inference and interpretability
may be derived via decision theory to be appropriate
in nonlinear model.

Other researchers including Hoque ([Hoq91]), Bhatti
([Bha93]), Baltagi ([Bal96]), Bhatti and Owen
([BO96]), Bhatti ([Bha97]), Bhatti et al. ([BKC98]),
Ingene and Lusch ([IL99]), Mok ([Mok02]), Hossain
et al. ([HBAO4]), Hajkova and Hurnik ([HHO7]),
Prajneshu ([Pra08]), Antony ([Ant09]), and Hossain
et al. ([HA10]), amongst others have used linear
regression models to measure the log-linear Cobb-
Douglas (C-D) type production processes.

This paper was aimed at estimating the parameters
of C-DP function with multiplicative and additive
errors using the classical and Bayesian approaches.
The rest of this paper is organised as follows; section
2 discusses the models of Cobb-Douglas production
function with additive and multiplicative errors, the
theoretical concepts of the methods employed
namely, classical and Bayesian methods are briefly
discussed, empirical illustrations, findings and
discussions follow in Section 4 and Section 5
concludes the paper.
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2. MODEL

Consider y; as a set of outputs of a production
process, i = 1, 2, ..., N, X;,X, are two factors of
production, capital and labour input respectively.
Bo is constant, §; and B,  are the outputs of
elasticity of capital and labour, coefficients of these
factors, where u; is the error terms (multiplicative
error and additive error). Cobb Douglas Model in the
choice of error is as follows:

Cobb-Douglas Regression Model with
Multiplicative Error (C-DME) term is given as,
Vi = 30X1ﬂ1Xzﬁzeui 1)

Equation (1) is nearly always treated as a linear
relationship by making a logarithmic transformation,
which yields:

YP= B+ BiX" 1+ B X"+ (2)
Where g*, is transformed intercept Y*, X*;, X*,
are the transformed variables in egn (1)
Cobb-Douglas Regression Model with Additive
Error (C-DAE) term.

i = BoX:P1X,P + 3
In the case of equation (3), the minimization of,
Yi—1u;%is no longer a simple linear estimation
problem. To estimate the production function, we
need to know different types of non-linear
estimation. In non-linear model it is not possible to
give a closed form expression for the estimates as a
function of the sample values, i.e., the likelihood
function or sum of squares cannot be transformed so
that the normal equations are linear. The idea of
using estimates that minimize the sum squared errors
is a data-analytic idea, not a statistical idea; it does
not depend on the statistical properties of the
observations (see [Chr01]). In most situation non-
linear estimation problem can be solved by
minimizing the error sum square estimation method
using any of the optimization method (see
[GQ978]). Gauss-Newton method is one of the
methods which is used to estimate the parameters of
model (3) ((HM15]).

By factoring out B,X;"1X,”> and take the natural
log of equation (3), gives

Y* = IB**O + ﬂlX**l + ﬁZX**Z + u (4)

where B**O is transformed intercept, Y**, X**;and
X**, are also the transformed variables in equation

©F

10

3. METHODOLOGY
3.1. Gauss Newton Method

The Gauss Newton Method is one of the classical
ways of estimating the parameters of nonlinear
models, therefore, the procedures stated below are
the universal steps of estimating any form of
nonlinear model either intrinsically nonlinear or
intrinsically linear.

Suppose, we want to estimate a nonlinear model of
the form

1,2,..,N (5)
Where; y; is response variable, f(X;, B) is the
nonlinear form comprising of the explanatory
variable and the coefficient of the model, and, the
error component with mean O and variance
o?,u; ~N(0,0%)

The matrix form of the model in equation (4) can be
expressed as;

yvi=fXpB)+u i=

21 X1 X1 X3
Y2 X1, Xo2 X3 Bo
y=|"|} x=1"- ' " |, B = |B1| and
. | . . . | ﬁz
lyNJ v Xon X3NJ
Uy
s
Uy

The Gauss Newton method begins by expanding
f(Xi,B) = fi(B) using Taylor’s series up to the first

derivative around a set of initial values, §;°" = (8,°,
B.° B,%) and representing the required parameters
appropriately. Set ;= g; — B;°, ¥.°= f£°=
fCxi,4°%), and set initial values 2,° = B,°
B.°Ba°.

Using the OLS method, we obtain the OLS estimates
by

~ I} -1
A= (z°2°% z°(D),
Where; D = Y - f©, since, 2% = B*; — B;°, the

revised estimate of g; is ﬁlj.

Hence, ,81]. = i]- + ﬁjo, the process is repeated to
obtained desired estimates as a general rule.

3.2. Bayesian Approach

The Markov Chain Monte Carlo technique (MCMC)
is employed by Metropolis-Hasting algorithm.
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Procedures for analyzing the “Cobb-Douglas with
Multiplicative and additive error term are the same.

3.3. The Likelihood Function and Prior (C-DME)

The log normal regression mean (X*£*) with error
precision (h = %) , random variable In(y) as the

data information using the multivariate Normal
density, the log likelihood can be given as:
N

PGB R) = =5 exp -5 (" = X'B) (" -

(2m)2
x*p)| (6)

hz

The previous information about a study before
seeing the data denoted by independent prior
P(B,h). Given P(B,h) = P(B).P(h) with P(pB)
being Normal and P(h) being Gamma

1
P(B) = N
(2m)z

—p)

Yz exp| - (8- 8) V6

and

1 h2—2 —hv
= - 2 —
P(h) = C7'h % exp(5=)

Where, C;; is the integrating constant for Gamma, It
is deduced that: E[B|y*] = B is the prior mean of 8
and Var(B|h) = V is the prior covariance matrix of
B with the mean of h as s~ 2and v degree of
freedom.

3.4. The Posterior (C-DME)

The posterior is proportional to the prior and the
likelihood, which is also the information obtained
after seeing the data and some mathematical
techniques being applied, usually denoted

=

h2

P(B.HIY) = —= exp -0 - xBY & -
x'p)| x g WEexp[-2(8 - B) V(8-

(2m)z
_q ,E2 —h
B x Clh s exp(2)

2s

. P(B, hly)
exp| -5 (hG = XY = X°)]

H[(B-B) v -] xhF e ()

S

this joint posterior density for § and h does not take
any well-known distributional form; so it cannot be

11

solved analytically but only through a posterior
simulation method.

By ignoring the terms that do not involve £ in
equation (7) we obtain,

PBly b cexp|-3{(8— B) 7B - B}| ®

Which implies that g|y*, h ~ N(B, V) a Multivariate
Normal density,

where, V= (@1+hx"x*)1
V(hX*'Y* + V71B)

Similarly, by treating equation (7) as a function of h
ignoring terms that do not involve h we can obtain

and

ﬂ_:

N+v-2

P(Rly",B) ch = exp[—2{(y" = X'B)'(y" -
X'B) +vs?}] (©)

This also implies that h|y*, B~ G(572,¥), a Gamma
density,

where, v=N+uv
0 =XB) ('~ X*B) +vs®

and sT2 =

v
The formulae of equation (8) and (9) look familiar to
those of the conjugate normal-gamma priors now but
it does not relate directly to the posterior of interest,
since

P(B,hly™) # P(Bly*,h) x P(hly™, B).

Therefore, the conditional posteriors in equation (8)
and (9) do not directly tells everything about the
posterior, P(B,h|y*). Nevertheless, there is a
posterior simulator called the Metropolis- Within-
Gibbs which makes use of the conditional posteriors
like (8) and (9) to produce random draws () and
h® for s=1,2,...,Swhich can be averaged to
produce estimates of the posterior properties just as
the Monte Carlo integration.

3.5. The Likelihood Function and Prior (C-DAE)

=

*k hz
POTIB M) = —=

@m?
xp)|

h *k *k ! *k
exp[—;(y - XUB)' (v -

(10)

The information at hand about a particular study
before seeing the data, denoted by the independent

prior by P(8, h)

P@) = —— WEexp|-5 (8- B) V(8

(2m)z
— E)]
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and
vz _p
P(R) = €716k 7 exp(59)
25
PBHIy™)  exp|~5 (0 — X B G
_ X**ﬁ) ,
+(8-p) v (s
N+v-2 —hv
— B xh 7 e

3.6. Posterior (C-DAE)

P(B, hly™) = (’ﬁ)ﬁ exp| -3 = X7BY (v -
27T) 2
X“B)| x . l)ﬂ VEexp|-3 (8- 8) v (B -

v—-2 —hv

E)] x C‘lch_Texp(2§_—2)

(11)

By ignoring the terms that do not involve B we
obtain,

P(Bly™,h) < exp|-3{(B - B) 778 - B}
(12)

Which  implies that
Multivariate Normal density,
where, V= (V14 hx*'x*)"1
V(XY™ + V71p)

Similarly, by treating equation (11) as a function of
h ignoring terms that do not involve h we can obtain

Bly”,h~N(B,V) a

and S =

N+v-2

P(Rly™,B) o« h = exp[=2{(y" =

X“BY (v — X" B) +vs?}| (13)

12

This also implies that h|y**,B~G(57%,7), a
Gamma density,
where, v =N + v and

S_Z B (y** _ X**ﬁ)l(y**_ X**ﬁ) + H2

v
The formulae of equation (12) and (13) look familiar
to those of the conjugate normal-gamma priors now
but it does not relate directly to the posterior of
interest, since

P(B,hly*™) # P(Bly™, h) x P(hly™, B).

Therefore, the conditional posteriors in equation (12)
and (13) do not directly tells everything about the
posterior, P(B, h|y*™) .Nevertheless, there is a
posterior simulator called the Metropolis- Within-
Gibbs which makes use of the conditional posteriors
like (12) and (13) to produce random draws 8() and
h®for s=1,2,...,Swhich can be averaged to

produce estimates of the posterior properties just as
the Monte Carlo integration.

4. EMPIRICAL ILLUSTRATIONS

The data used for analysis under this study were
simulated using Monte Carlo simulation technique.
The explanatory variables is drawn independently
from a uniform [0,1] distribution, X;; ~ U[0,1],i =

01,2andj=1,2,..,N. Values fixed for the
regression coefficients p;,i =0,1,2 ie By =
15,8, = 0.85,B8, = 0.15. The error component
drawn from a standard normal distribution,

gj ~ N[0,1], incorporated into non- linear Cobb-
Douglas model to obtain the response variable (data
of interest) using four (4) different sample sizes
N=30, N=50, N=100, N=150 setting up a 10,000
iterations and a burning of 1000 to attain
convergence of the posterior estimates.
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Table 1: The Additive and Multiplicative Error Based Cobb-Douglas Production Functions

ADDITIVE-ERROR-BASED MULTIPLICATIVE-ERROR-BASED
Prior (SD) GNM Posterior NSE GNM Posterior NSE
(S.E) (S.D) (S.E) (S.D)
N=50
Bo 0.001 15.445690 15.815700 | 0.000622 | 10.879500 10.882991 0.000595
(15) (500.40) (0.446410) | (0.058995) (0.221240) | (0.056498)
B 0.005 0.845610 0.934454 0.000372 | 0.829240 0.829921 0.000317
(0.85) | (90.7) (0.046720) | (0.035239) (0.119940) | (0.030103)
B2 0.01 0.186740 0.160182 0.000477 | 0.18113 0.180948 0.000247
(0.15) | (449.097) | (0.026600) | (0.045231) (0.091720) | (0.023506)
N=100
Bo 0.001 14.749440 15.69809 0.000445 | 12.723619 12.726243 0.000426
(15) (500.40) (0.289740) | (0.042246) (0.170030) | (0.040442)
B 0.005 0.832800 1.027199 0.000294 | 0.791700 0.792139 0.000267
(0.85) | (90.7) (0.030560) | (0.027920) (0.108620) | (0.025392)
Ba 0.01 0.128510 0.243364 0.000301 | 0.174650 0.174478 0.000213
(0.15) | (449.097) | (0.015610) | (0.028505) (0.084730) | (0.020215)
N=250
Bo 0.001 15.038910 15.67601 0.000291 | 13.243674 13.245939 0.000269
(15) (500.40) (0.221834) | (0.027615) (0.107760) | (0.025597)
By 0.005 0.841602 0.837894 0.000195 | 0.806600 0.806481 0.000173
(0.85) | (90.7) (0.020145) | (0.018495) (0.068750) | (0.016405)
B2 0.01 0.159087 0.159936 0.000155 | 0.157030 0.157264 0.000152
(0.15) | (449.097) | (0.009644) | (0.014683) (0.062110) | (0.014474)
N=500
Bo 0.001 14.976400 13.573850 | 0.000197 | 15.170155 15.17211 0.000186
(15) (500.40) (0.137190) | (0.018704) (0.084730) | (0.017879)
B 0.005 0.841800 0.759519 0.000120 | 0.845710 0.845861 0.000114
(0.85) | (90.7) (0.014130) | (0.011394) (0.04892) (0.010812)
B2 0.01 0.148060 0.132379 0.000117 | 0.176550 0.176499 0.000103
(0.15) | (449.097) | (0.007060) | (0.011079) (0.049910) | (0.009809)
5. FINDINGS AND DISCUSSIONS general, the parameter estimates from additive

Table shows the estimates obtained using the Cobb-
Douglas production function with additive error and
multiplicative error term. The priors used are 0.001
(500.40), 0.005 (90.7), 0.01 (449.097) under the
various sample sizes of study with the standard
errors (SD) in bracket, a metropolis Hasting Within
Gibbs algorithm was used with the Normal-Gamma
prior to obtain the posterior estimates as recorded
above using the additive and multiplicative error
models. The result shows that the multiplicative
error model behaves better than the additive error
model.

Furthermore, the nuisance parameter S, shows a
fluctuated and unsteady behaviour by producing
values that are close to the true values for additive
error model using the Gauss-Newton method while
the estimates are far from the true values as sample
size increased for the multiplicative error model.
The estimates obtained by the Bayesian method are
also closer to the true parameter values for the
additive model than for the multiplicative model. In
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model are better than those produced by the
multiplicative model for both classical and Bayesian
approaches.

Lastly, the standard error of the GNM and the
Numerical Standard Error of the posterior decrease
consistently as sample size increases, however, the
standard errors of the Bayesian approach are
generally better than those of the classical approach.

6. CONCLUSION

This paper has been able to achieve the objectives by
checking which model is more appropriate between
the Cobb-Douglas production function with additive
error term and the Cobb-Douglas production
function with multiplicative error term, the error
model in the additive behaved better than the
multiplicative error model. Parameters estimated for
the two scenarios of Cobb-Douglas production
function (i.e. multiplicative error and additive error
term) using the Bayesian approach and Frequentist
approach, the results made it obvious that the
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Bayesian approached is preferred in using the Cobb-
Douglas production function based on the minimal
numerical standard errors produced in between the
two approaches under investigation. The level of
efficiency in the Bayesian estimation as sample size
increases is shown as the numerical standard errors
decreased with increase in sample sizes.
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