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ABSTRACTS: Among the Incomplete Block Designs 

(IBDs), Balanced Incomplete Block Designs (BIBDs) are 

mostly studied. However, BIBD is not available for all 

parameters of most designs therefore limited in 

applications. So, in place of BIBD there is need for 
another incomplete block design that could be used for 

varieties of applications. Thus, the need for Pairwise 

Balanced Designs (PBDs). PBD (n, K, λ) is a block 

design where n is the number of treatments, where K= 

{k1, k2…, kb} is the set of sizes of block and    is number 

of time a pair of treatment appear together within blocks. 

Also, little is known about the construction of PBDs using 

Lotto Designs (LDs).  An LD(n, k, p t) is a set of k-blocks 

of an n-treatments such that any p-sets intersect at least 

one k-block in t number of times. The aim of the study is 

to provide a simple method for constructing two classes 
of PBD(n, K, λ) when = K {3, 4} or {3, 4, 5} using 

appropriate LDs; establish conditions for the 

identification of LDs that could use to construct the 

classes of PBDs; and derive theorems and simple steps for 

the construction of PBDs from LDs. 

The research work utilized the Li’s inequality 
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 λ  to obtain LDs that 

are PBDs using r and λ obtained from the classes of PBDs 

on the Li inequality. Some LDs were generated and based 

on the structure of the classes of the PBDs to be 

constructed, some conditions were imposed. Hence some 

LDs were found to qualify as PBDs. Theorems were 

proposed and proved. Hence, the following results were 

obtained: Any LD(n, k, p, t) satisfying the conditions: 3 ≤ 

k  ≤ 5 and  n = p  qualify as PBDs and the proposed 

theorems were: (a) 2-LDs(n, 3, p, 3), ( n, 4, p, 4) is a 

PBD(n, {3, 4}) if and only if  n ≡ 0, 1 (mod 3);  (b). 3-
LDs(n, 3, p, 3), ( n, 4, p, 4), ( n, 5, p, 5) is a PBD(n, {3, 4, 

5}) if and only if  n ≡ 2, 3 (mod 4). Thus, two classes of 

PBDs(n, K, λ) when K= {3, 4}) and K= {3, 4, 5} were 

constructed from the appropriate LDs for all admissible n-

treatments satisfying the specified conditions. 

KEYWORDS: Block Designs, Incomplete Block Designs 

(IBD), Balanced Incomplete Block Designs (BIBDs), 

Pairwise Balanced Designs (PBDs) and Lotto Designs 

(LDs). 

  
 

 

1. INTRODUCTION  

 
Design theory has its roots in recreational 

mathematics. Many types of designs that are studied 

today were first considered in the context of 
mathematical puzzles or brain-teasers in the 

eighteenth and nineteenth centuries. The study of 

design theory as a mathematical discipline really 

began in the twentieth century due to applications in 
the design and analysis of statistical experiments. 

Designs have many other applications as well, such 

as tournament scheduling, lotteries, mathematical 
biology, algorithm design and analysis, networking, 

group testing, and cryptography ([Sti03]). 

Combinatorial design theory is the study of arranging 
elements of a finite set into patterns (subsets, arrays 

etc.) according to specified rules. Its history dates 

back to Euler’s work on Latin squares, but it mostly 

gained recognition after Ronald Fisher, a statistician 
and geneticist, developed techniques for the design 

and analysis of experiments. Today it has become a 

fast-growing subfield of mathematics with close ties 
to several other areas including graph theory, coding 

theory, cryptography and engineering applications. 

 

1.1.      The Block Designs 
 

In block designs, blocks are built from the set of X 

(treatments) in which each element of X is called 
treatment, blocks are formed when pairs of 

treatments are chosen as subsets to satisfy some set 

of properties that are deemed useful for a particular 
application. The history of block Designs is as old as 

the history of Steiner systems dates back to 1733, 

when W.S.B. Woolhouse asked the following 

question: how do we arrange Fifteen young ladies 
who walk out three abreast for seven days in 

succession if no two shall walk abreast? this 

question was later known as Kirkman’s schoolgirl 
problem posted in Lady’s and Gentlemen's Diary of 

1844. The problem was solved in 1847 by Rev. T.P. 

Kirkman ([Kir47]). Woolhouse studied triple 
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systems, i.e., block designs with k = 3. Later in 

1853, Steiner discussed t -designs with k = t + 1 and 

λ = 1. The actual study of block designs started with 
a study of algebraic curves by Plucker ([Plu35]). He 

encountered a Steiner Triple System (STS) of order 

9 and claimed that an STS could exist only when m≡ 

3 (mod 6). He correctly revised this condition to m ≡ 
1, 3(mod 6) in 1839. In block design, a design is a 

pair (X, Ɓ), where X is a set of some elements called 

treatments, and Ɓ is a collection of some subsets of 
X called blocks. The numbers of treatments and 

blocks are denoted by n = n(X) and b = n(Ɓ) 

respectively. A block design is an incidence system 

(n, k, λ, b, r) where set X of n- treatments are 
partitioned into a family Ɓ of b subsets (blocks) in 

such a way that any two treatments determine λ 

blocks, with k size in each block, and each treatment 
is contained in r different blocks.  When k < n, the 

design is said to be incomplete e.g BIBD. When k = 

n- a case of Randomized Completely Block Designs 
(RCBD), and where K={ k1, k2,…kb} a case of 

Pairwise Balanced Designs. 

 

1.2.    The Pairwise Balanced Design  
 

Wilson ([Wil71a, Wil71b]) defined a Pairwise 

Balanced Design (PBD) of order n as a pair (X, Ɓ) 
where Ɓ is a set of cardinality B, and B is a set of 

subsets of X (each of which is called a block) with 

the property that every 2-treatments subset of X is 
contained in a unique block. 

For example: a PBD(5, {2, 3}, 1), where X= {1, 2, 

3, 4, 5},  K={2, 3},  λ= 1, has the following set of 

blocks:  
Ɓ =.{{1, 2, 3}, {1, 4, 5}, {2, 4}, {2, 5}, {3 ,4}, {3, 5}}  

Where: 

n is the total number of the treatment in the design 
therefore n = 5 and n = n(X), 

K is the set of sizes of the block of the design. 

Therefore, K = {2, 3}, clearly K = {k1 ..., kb},  

Where: 
ki is the block size as i= 1, 2, …, b, therefore k1 = 2 

and k2 = 3 

bi is the number of units in the blocks size of ki,  
Therefore, b1= 2 and b2 = 4 

Clearly b =      

λ is the number of time a pair of treatment appears 
together within blocks, therefore λ = 1 

In a Pairwise Balanced Design when λ = 1, it is 

usually written as PBD(n, K).  

Ɓ is the collection of all the set of blocks (vector 
space) while B is the each of the block inside the set 

cardinality (vector).  

Therefore Ɓ ={{B1, B2…Bb}} and b is the number 
of blocks for each of the block sizes. 

Among all the block designs, Balanced Incomplete 

Block Design (BIBD) is the easiest in terms of 

construction and analysis. However, BIBD is not 

available for all parameters of most designs, BIBD 

exist only if: 
a).  nr = bk; 

b).  λ (n – 1) = r (k – 1); 

 and 

c).  b ≥ n 
So, in place of BIBD, there is need for another block 

design which is balanced, variance balanced and 

flexible, design that could be used for varieties of 
applications such as construction of other important 

designs, confirmation of the existence of other 

designs etc. thus the need for Pairwise Balanced 

Designs (PBDs). Bose ([Bos39]) introduced the 
present terminology of balanced incomplete block 

designs although the present use of n, b, r, k, λ was 

due to Yates except that he originally used t for 
treatment. In other words, one can say that Bose and 

Shrikhande ([BS59a, BS59b, BS60a, BS60b]) 

introduced a general class of incomplete block 
design which they called pair-wise balanced design 

of index λ. Pairwise Balanced Design also shared 

some of the properties of BIB designs like every pair 

of treatments occurs together in λ blocks ([Wil71a, 
Wil71b]). The concept of Pairwise Balanced Design 

is merely the combinatorial interest in block designs. 

Because with the help of pair-wise balanced design 
many other incomplete block designs can be 

constructed ([Wil72a, Wil72b, Wil72c, Wil72d]). 

Bose and Shrikhande ([BS59a, BS59b]) discussed 
about the pairwise balanced design in addition to 

existence of orthogonal Latin square designs. Bose 

and Shrikhande ([BS60a, BS60b]) obtained the 

various methods for the construction of pair-wise 
orthogonal sets of Latin square design. However, the 

detailed discussion and construction on pair-wise 

balanced design is studied by Bose and Shrikhande 
([BS60a, BS60b]). In other words, we can say that 

Bose and Shrikhande ([BS59a, BS59b, BS60a, 

BS60b]) introduced a general class of incomplete 

block design which they called pair-wise balanced 
design of index λ. The pair-wise balanced design 

also shared some of the properties of BIB designs 

like every pair of treatments occurs together in λ 
blocks. The concept of Pairwise Balanced Design is 

merely the combinatorial interest in block designs. 

Because with the help of Pairwise Balanced Design 
many other incomplete block designs can be 

constructed. Smith, Blaikie and Taylor ([SBT98]) 

proved the existence of a PBD(n, K, λ) with bi 

blocks of size ki ϵ K  and went further to present 
useful expression that connects PBD parameters 

with number of blocks of different sizes as follows: 
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Clearly, b =    . 

The application of PBDs in the construction of 

related combinatorial systems is of paramount 

important in the design theory. PBDs were used in 
the construction of most of resolvable and recursive 

designs such as: Varieties of Short Conjugate, 

Orthogonal Quasi-Group Identities, Orthogonal 
arrays with interesting Conjugacy Properties, Egde-

coloured Designs, and Mendelsohn Designs etc. 

Bose and Shrikhande ([BS60a, BS60b]) used 
pairwise balanced design to construct Mutually 

Orthogonal Latin Square (MOLS). Hedayat and 

Stufken ([HS89]) showed that the problems of 

constructing pairwise balanced designs and variance 
balanced block designs are equivalent. Effanga, 

Ugboh, Enang and Eno ([E+09]) developed a non-

linear non-preemptive binary integer goal 
programming model for the construction of D-

optimal pairwise balanced incomplete block designs. 

PBDs can also be used to construct other designs 
such as Steiner Triple Systems (STS), Pairwise 

Additive Designs PBIB etc. It also has greater 

significance in the application to the solution of 

existence questions for other types of designs such 
as t-Designs, Partially Balanced Designs etc. 

([IB03]). 

 

1.3. Existence theory of Pairwise Balanced 

Designs 

 

One of the most important breakthroughs in design 
theory was made by Richard Wilson in the early 

1970s. He showed that the trivial necessary 

conditions for the existence of various kinds of 
designs are asymptotically sufficient theory by 

Wilson. Wilson ([Wil71a, Wil71b]) proved the 

existence of a PBD(n, K),  where n is the number of 

treatments and K is the set of blocks where k ∈ K  

and k ≥ 2 (K ⊆ Z≥2 ) which means n treatments 

contains the allowed block sizes. Since the set of 

blocks incident with any treatment must contain 
each other treatment once, and since the set of pairs 

of treatment must partition into the pairs covered in 

each block, thus, the ‘divisibility’ conditions: 
 

α(K) | n – 1     (1)  

and 

β(K) | n(n − 1)     (2) 
 

where α(K) := gcd{k − 1 : k ∈ K} and  

β(K) := gcd{k(k − 1) : k ∈ K}.  
(note: gcd means greater common divisor and Z≥2 

means integer greater than or equal to 2). 

The integers n satisfying (1) and (2) are admissible. 

Wilson (1972) states that admissibility is sufficient 
for existence of a PBD(n, K), provided n is large and 

went on to prove it(see the main work ). 

For example, 

Suppose K = {3, 4, 6}.  

Then it is easy to compute   
 

α(K) = gcd{2, 3, 5} = 1    (3) 

and  

β(K) = gcd{6, 12, 30} = 6 
 

According to (1) and (2), necessary conditions for the 

existence of a PBD with block sizes 3, 4 or 6 are that: 
 

n-1 ≡ 0(mod 1) and (n-1) ≡ 0(mod 6) 

 

The first conditions just say n is an integer. The 
second condition is satisfied iff  n(n-1) ≡ 0 (mod 3), 

so we have n≡ 0 or 1 mod 3. Then n ≥ 3 follows 

since 3 is the smallest block size. 
 

1.4.    The Lotto Designs    

 
According to Stinson ([Sti03]) an (n, k, p t) lotto 

designs is a set of k-set (blocks) of an n -set 

(treatments) such that any p-set interest at least one 

k-set (blocks) in t or more times. Suppose n, k, p and 
t are integers and B is a collection of k-subsets of a 

set X of n treatments (usually X is X(n)). Then B is 

an (n, k, p, t) Lotto Designs (LD) if an arbitrary p-
subsets of X(n) intersects relevant k-set of B in at 

least t times. The k-sets in B are known as the blocks 

of the Lotto Designs. The elements X are known as 
the n -treatments of the design. Lotto design can also 

be denoted by (X, B) Where B denotes the blocks of 

the design and X denotes the set from which the 

treatments of the blocks of B are chosen.  
For example,  

An LD(13, 6, 5, 3)  is a typical example of a Lottery 

Design, where: 
 n =13, k = 6, p = 5 and t = 3 has the following set of 

blocks: 

{ {1, 2, 3, 4, 5, 6}, 

 {1, 2, 3, 4, 5, 7},  
{1, 2, 3, 4, 6, 7},  

{1, 2, 3, 5, 6, 7},  

{8, 9, 10, 11, 12, 13} } 
 

2. METHODOLOGY 

 
Numerous pairwise balanced designs constructed so 

far by various scholars were based on the 

understanding of Group Divisible Designs (GDDs) 

which have numerous analogues, interpretations 
and meanings. However, PBD plays important roles 

in the designs theory. More importantly, among the 

incomplete block designs PBDs have varieties of 
applications. Therefore, this research work 

introduces a new method for the construction of 

Pairwise Balanced Designs (PBDs) using Lotto 



Anale. Seria Informatică. Vol. XVII fasc. 1 – 2019 
Annals. Computer Science Series. 17

th
 Tome 1

st
  Fasc. – 2019 

130 

Designs (LDs). In designs theory, if a new design is 

constructed from another related design it is known 

as a recursive construction and if a specific fitted 
class of designs are generated with specific 

conditions imposed using mathematical relations of 

modulus system the design is known as congruent 

class, therefore, this research work presents a 
simple way of construction of PBDs from an 

appropriate LDs which is both recursive and 

congruent. The next stages shall be followed:  
Stage One: Specification of the classes of the PBDs 

to be constructed using developing theorems.  

Stage Two:  Identification of LDs that will qualify 

as PBDs. Computer program based on the Li 
inequality: 
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 λ   

 

was written so as to identified LDs that could 

produce two classes of the PBDs to be constructed. 
Stage Three: Specify certain conditions and 

imposed those conditions on all the generated LDs 

from the Li inequality and Select all LDs that satisfy 
the specified conditions.  

Stage Four: Derive theorems for the construction of 

the classes of PBDs(n, {3, 4})  and (n, {3, 4, 5}) 

from LDs. 
Stage four: The actual construction. 

  

2.1      Dimension of the set of blocks of PBDs 
 

The dimension of a linear space is the maximum 

integer d such that any set of d points generates a 
proper subspace. For instance, the subspace 

generated by any two points is the line containing 

them. So, every nontrivial linear space has 

dimension at least two. Linear spaces have another 
name in the context of designs. 

For Example, A (PBD) of index unity is a pair (X, 

Ɓ) where X is a set (of points) and Ɓ a class of 
subsets B of X (called blocks) such that any pair of 

distinct points of X is contained in exactly one of the 

blocks of Ɓ (and we may also require /B/ ≥ 2 for 

each B ϵ Ɓ). Such systems are also known as linear 
spaces. The dimension of a PBD is the maximum 

integer d such that any set of d points generates a 

proper flat. This definition is taken from the context 
of linear spaces. So every PBD(n, K) that has more 

than one block has dimension at least two.  

Therefore, K ⊆ Z ≥2   which means n treatments may 
contains the allowed block sizes. Specifically, this 

research work attempts to construct two classes of 

PBDs where, K = {3, 4}; and K= {3,4,5}. 

 
 

 

3.  THE CONSTRUCTION 

 

The aim of using the Li-Inequality is to identify 
LDs that could qualify as PBD(n, K) where K = {3, 

4} and {3, 4, 5} because it will be easier to use such 

LDs to construct PBDs. Li (1999) suggested that for 

any designs to be qualified as an LDs, such a design 
must have satisfied the bellow inequality: 

 

 
  

   
     

 
 + 

    
  

   
 

   
          

 
  λ 

 

For A PBD with a set of K = {3, 4} 

 

3.1. Preliminary Theorem 1 
 

There exists a PBD(n, {3, 4}) of dimension two if 

and only if n ≡ 0, 1(mod 3) provided  n ≥ 6   
Here, r = 3 and λ =1.  

Hence, the followings LDs were generated: 

n k p t  
5 3 5 3 

5 4 5 3 

6 3 6 3 
6 3 6 4 

7 3 7 3 

7 4 7 4 

8 4 8 3 
9 3 9 3 

9 4 9 4 

10 3 10 3 
10 4 10 4 

10 5 10 5 

11 3 11 3 
11 4 11 4 

 

3.2. Conditions imposed  
 
From the above result, some LDs were produced 

from using λ = 1 and r = 3 obtained from the classes 

of PBDs(n, {3, 4}) on the Li inequality, this shows 
that some LDs were qualified as PBDs.  

Thus, the conditions:    

i).  3 ≤ k ≤ 4 and 

ii).   n = p  
which give the following LDs: 

The LDs(6, 3, 6, 3), (6, 4, 6, 4) 

The LDs(7, 3, 7, 3), (7, 4, 7, 4), 
The LDs(9, 3, 9, 3), (9, 4, 9, 4) 

The LDs(10, 3, 10, 3), (10, 4, 10, 4) 

The LDs(12, 3, 12, 3), (12, 4, 12, 4) 
The LDs(13, 3, 13, 3), (13, 4, 13, 4) 

The LDs(15, 3, 15, 3),(15, 4, 15, 4) 

The LDs(16, 3, 16, 3), (16, 4, 16, 4), 

The LDs(18, 3, 18, 3), (18, 4, 18, 4) 
The LDs(19, 3, 19, 3), (19, 4, 19, 4) 

The LDs(21, 3, 21, 3), (21, 4, 21, 4) 
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The LDs(22, 3, 22, 3), (22, 4, 22, 4) 

The LDs(24, 3, 24, 3),(24, 4, 24, 4) 

The LDs(25, 3, 25, 3), (25, 4, 25, 4), 
The LDs(27, 3, 27, 3), (27, 4, 27, 4) 

The LDs(28, 3, 28, 3), (28, 4, 28, 4) 

The LDs(30, 3, 30, 3), (30, 4, 30, 4) 

The LDs(31, 3, 31, 3), (31, 4, 31, 4). 
Etc. 

All n-treatments satisfies: n ≡ 0 or 1(mod3), when n 

≥ 6 and λ =1. And the imposed conditions for any 
LDs to be qualified as PBDs: 

i). 3 ≤ k ≤ 4;  

ii).  n = p and 

iii). λ = 1 

Clearly, 2-LD(n, 3, p, 3), ( n, 4 p, 4) = PBD(n, 

{3, 4}, 1). 

 

3.3. Theorem 1  

 

A PBD(n, {3, 4}) is a 2-LDs(n, 3, p, 3), (n, 4, p, 4) 

is if and only if the following conditions are 

satisfied: 

i).   for all n ≡ 0, 1 (mod 3); 

ii).  3 ≤ k ≤ 4;  
iiii).  n = p and 

iv).  λ = 1 

 

3.4. Derived Steps for construction of 

congruent class of PBD(n, {3, 4}, 1) from 

any 2- LDs(n, 3, p, 3), (n, 4, p, 4) 

 

(1). Select any n-treatments that satisfy the 

condition n ≡ 0, 1 (mod 3). 

(2). Select any 2-LDs corresponding to n-treatments 
of the desired PBD that satisfy the followings 

conditions: 

 i). 3 ≤ k ≤ 4;  
ii). n = p and 

(3). Then, generate the blocks of the PBDs by 

Partitioning n- treatments into sets of blocks of 3 or 

4 such that each pair of treatments is contained in 
precisely one block which follows that n(n − 1) is 

an integer linear combination of k(k − 1), k ∈ K. 

For Example 
To construct a PBD(10, {3, 4}, 1), where, n-

treatments is 10. 

Therefore, X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.  
Then, select 2- LDs(10, 3, 10, 3), (10, 4, 10, 4)  that 

corresponds to the n-treatments of the desired PBD 

which satisfies the two conditions:  

i).  3 ≤ k ≤ 4;  
ii).  n = p and 

Then pair the treatments to form the blocks of the 

design into three and four sizes, we shall have the 
following blocks: 

{1, 2, 3, 4}, 

{1, 5, 6, 7}, 

{1, 8, 9, 10}; 

{2, 5, 8}, 

{2, 6, 9}, 
 {2, 7, 10}, 

{3, 5, 10},  

{3, 6, 8}, 

 {3, 7, 9}, 
{4, 5, 9}, 

{4, 6, 10}, 

{4, 7, 8}. 
Where, 

Ɓ = {{1, 2, 3, 4}, {1, 5, 6, 7}, {1, 8, 9, 10}, {2, 5, 

8}, {2, 6, 9}, {2, 7, 10}, {3, 5, 10}, {3, 6, 8}, {3, 7, 

9}, {4, 5, 9}, {4, 6, 10}, {4, 7, 8}}. 
Ɓ = {BI, B2…, Bb} 

K = {k1, k2…, kb}  

and 

b =      

where, k1 = 3, k2 = 4, and b1 = 9, b2 = 3. 

 

3.5. Confirmation of construction 1 

 

(a). Using Connecting equation of Smith et al 

([SBT98]):   
 

λn(n-1)              

 
where, k1 = 3, k2 = 4, b1 = 9, b2 = 3, n = 10, λ = 1 

Therefore, 

1*10(10-1) = 9 *3 ( 3 – 1) + 3 * 4 (4 -1) 

10(9) = 54 + 36 
90 = 90  

Thus,  

λn(n-1)              
(b). Stanton-Kalbfleisch-Bound ([Wil75]):  

 

b ≥ SK(k, n)= 1+ k
2     

   
 

 

Where, 

b=     = 12,  k1 = 3, k2 = 4, b1 = 9, b2 = 3, n = 
10, λ = 1 

Therefore, 

 12 ≥ SK(3, 10) 
 = 1 + 9(10 -3) / 10 – 1 

 = 1 + 9(7) / 9 

 = 1+ 7 

 =8 , hence,   
 12 ≥ 8 also, when k = 4, and n = 10 

 12 ≥ SK(4, 10) 

 = 1 + 16(6) / 9 
 = 1 + 10.7 

 = 1 + 10.7 

 =11. 7 hence,  

12 ≥ 11. 7 
 This confirm construction 1. 
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3.6. Construction Two 

 

For PBDs with a set block  K = {3, 4, 5} 
Preliminary Theorem 2. There exists a PBD(n, {3, 

4, 5}) of dimension three if and only if n ≡ 2, 3(mod 

4) provided  n ≥ 11 and λ = 1. 

Here r = 4 and  λ = 1. 
These are used on the Li program to generate LDs 

that could qualify as PBDs (n, K, λ) where K = {3, 

4, 5}. 
Thus, the following LDs: 

n k  p t 

6 3 6 3 

7 3 7 3 
8 3 8 3 

9 3 9 3 

10 3 10 3 
10 4 10 4 

11 3 11 4 

11 4 11 4 
11 5 11 5 

12 5 12 5 

13 5 13 5 

14 3 14 3 
14 4 14 4 

14 5 14 5 

15 3 15 3 
15 4 15 4 

15 5 15 5 

Conditions imposed  
Several LDs were produced from using λ = 1 and r 

= 4 obtained from the classes of PBDs(n, {3, 4, 5}) 

on the Li inequality as shown above, this shows that 

some LDs qualified as PBDs satisfying the 
proposed theorem 2.  

Thus, the conditions:    

i).  3 ≤ k ≤ 5 and 
ii).   n = p  

which give the following LDs: 

The LDs(11, 3, 11, 3), (11, 4, 11, 4), (11, 5, 11, 5) 

The LDs(14, 3, 14, 3), (14, 4, 14, 4), (14, 5, 14, 5) 
The LDs(15, 3, 15, 3), (15, 4, 15, 4), (15, 5, 15, 5) 

The LDs (18, 3, 18, 3), (18, 4, 18, 4), (18, 5, 18, 5) 

The LDs(19, 3, 19, 3), (19, 4, 19, 4), (19, 5, 22, 5) 
The LDs(22, 3, 22, 3), (22, 4, 22, 4), (22, 5, 14, 5) 

The LDs(23, 3,23, 5, 3), (23, 4, 23, 4), (23, 5, 23, 5) 

The LDs (26, 3, 26, 3), (26, 4, 26, 4), (26, 5, 26, 5) 
The LDs(27, 3, 27, 3), (27, 4, 27, 4), (27, 5, 27, 5) 

The LDs(30, 3, 30, 3), (30, 4, 30, 4), (30, 5, 30, 5) 

The LDs(31, 3, 31, 3), (31, 4, 31, 4), (31, 5, 31, 5) 

etc. 

Clearly, 3-LD(n, 3, p, 3), ( n, 4, p, 4), ( n, 5, p, 5) 

could be used to construct PBD(n, {3, 4, 5}, 1). 

Theorem 2: A PBD(n, {3, 4, 5}) is a 3-LDs(n, k, p, 
t), ( n, k+1, p, t), (n, k+2, p, t) if and only if the  

following conditions are satisfied:  

i). n ≡ 2, 3 (mod 4) 

ii). 3 ≤ k ≤ 5  

iiii). n = p and 

iv). λ = 1 

Derived Steps for construction of PBD(n, {3, 4, 

5}, 1) from any 3- LDs(n, 3, p, 3) (n, 4, p, 4) (n, 5, 

p, 5). 
(1). Select any n-treatments that satisfy the 
condition n ≡ 2, 3 (mod 4). 

(2). Select any 3-LDs corresponding to n-treatments 

of the desired PBD that satisfy the followings 
conditions: 

 i). 3 ≤ k ≤ 5;  

ii). n = p and  

(3). Then, generate the blocks of the PBDs by 
Partitioning n- treatments into sets of blocks of 3 or 

4 or 5 such that each pair of treatments is contained 

in precisely one block which follows that n(n − 1) is 

an integer linear combination of k(k − 1), k ∈ K. 

For Example 

To construct a PBD(15, {3, 4, 5}, 1), where, n-
treatment is 15 and it satisfy condition 1 thus: 

X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} 

Select  

3- LDs(15, 3, 15, 3), (15, 4, 15, 4), (15, 5, 15, 5) 
which corresponds to n-treatment 15 and satisfy the 

following conditions: 

i).  3 ≤ k ≤ 5; 
ii).  n = p and 

then pair the n-treatments to form the blocks of 

sizes three, four and five in such a way that no pair 

appears together more than once within blocks. 
Then we have the following blocks:   

{1, 2, 3, 4, 5}, 

 {1, 6, 7, 8, 9}, 
{1, 10, 11, 12, 13}; 

{2, 6, 10, 14}, 

 {2, 7, 11, 15}, 
{3, 6, 12, 15}, 

 {3, 7, 13, 14}, 

{4, 8, 10, 15}, 

 {4, 9, 11, 14},  
 {5, 8, 12, 14}, 

 {5, 9, 13, 15};  

{1, 14, 15}, 
 {2, 8, 13}, 

{2, 9, 12}, 

 {3, 8, 11}, 
 {3, 9, 10}, 

 {4, 6, 13}, 

{4, 7, 12}, 

 {5, 6, 11}, 
 {5, 7, 10}. 

Therefore,  

Ɓ = {BI, B2…, Bk} 
K = {k1, k

-
2…, kb} and  

b =      
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Therefore,  

k1 = 3, k2= 4, k3 = 5, and  

b1 = 3, b2 = 8, b3 = 9  
therefore b = 20. 

 

3.7. Confirmation of construction 2 

 
(a).Using Connecting equation of Smith et al 

([SBT98]):   

 

λn(n-1)              

 

where, k1 = 3, k2 = 4, k3 = 5,  b1 = 3, b2 = 8, b3 = 

9 , n = 15, λ = 1 
Therefore, 

1* 15(15 -1) = 9*3 (2) + 8 * 4 (3) + 3 * 5  (4) 

 210 = 54 + 96 +60 
 210 = 210 

Thus,  

 

λn(n-1)              

 

(b). Stanton-Kalbfleisch-Bound ([Wil75]):  

 

b ≥ SK(k, n)= 1+ k
2     

   
 

 
Where, b= 20  

 20 ≥ SK(3, 15)  

 = 1 + 9(17)/ 14  

 = 11.9 . 
Therefore  20 ≥ 11. 9  

Also, when k = 4 and n = 15 

 20 ≥ SK(4, 15)  
 = 1 + 16(11)/ 14 

 = 13. 6. 

Therefore, 20 ≥ 13. 6 
Also, when k = 5 and n = 15 

 20 ≥ SK(5, 15)  

 = 1 + 25 (10) / 14 

 = 18. 9. Therefore,  
 20 ≥ 18. 9 

This confirm construction 2. 

 

3.9. Characteristics of the constructed PBDs 

from LDs 

 

(i) K = {k1, k2, k3} 
(ii) ki ≤ n; ki ≠ kj  : and 

(iii) b =       

 

3.9. Proof of the derived theorem 1 

 

From the Wilson Existence condition for a PBD(n, 
K) in (1) and (2).  

Setting K = {3, 4}. 

Then,   

 

α (K) = gcd{2, 3} = 1  

and  

β (K) = gcd{6, 12} = 3 
therefore,   

 

n-1 ≡ 0 (mod 1) and n(n-1) ≡ 0 (mod 3).  

 
The first condition merely says that n is an integer. 

The second condition is satisfied if only if  

 
n(n -1) ≡ 0 or 1 mod 3.  

 

Therefore, all values of n ≥ 6 such as 6, 7, 9, 10, 12, 

13 could have a set of block K = {3, 4}. Then, n ≥ 6 
follows since 3 is the smallest block size which 

corresponds to the proposed theorem. 

 

3.10. Proof of the derived theorem 2 

 

Setting K = {3, 4, 5}  
Then,   

 

α (K) = gcd{2, 3, 4} = 1  

and  
β (K) = gcd{6, 12, 20} = 4.   

 

Therefore,  
 

n-1 ≡ 0 (mod 1) and n(n-1) ≡ 0 (mod 4) 

 
The first condition merely says that n is an integer. 

The second condition is satisfied if only if  

 

n(n -1) ≡ 2 or 3 mod 4. 
 

Therefore, for all n treatments equal or greater than 

11 such as 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 
31…, satisfying these conditions could take set of K 

= {3, 4, 5}. Then, n ≥ 11 follows since 3 is the 

smallest block size which corresponds to the 

proposed theorem. 
 

4.  CONCLUSION 
 
Considering the important of Pairwise Balanced 

Designs (PBDs) in designs theory, the research 

work concluded as follows: Any LD(n, k, p, t) 
satisfying the Li inequality, k = 3, 4, 5 and n = p 

qualified as PBDs,  2-LDs(n, 3, p, 3), (n, 4, p, 4) 

can be used to construct PBD(n, {3, 4}) provided n 

≡ 0,1(mod 3) and 3-LDs(n, 3, p, 3), (n, 4, p, 4), (n, 
5, p, 5) can be used to construct PBD(n, {3, 4, 5}) 

provided n ≡ 2, 3 (mod 4) by Partitioning n- 

treatments into sets of blocks of 3 or 4 or 5 such 
that each pair of treatments is contained in precisely 

one block which follows that n(n − 1) is an integer 

linear combination of k(k − 1), k ∈ K. 
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