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ABSTRACT: Benchmarking problem arises when the sum 

of sub-annual totals of a particular economic variable from 

a source are not equal to the annual totals from another 

source. As a result, there is a need for reconciliation of the 

two datasets from different sources for such data to be 

reliably used for research purposes. Earlier research 

showed that Proportional First Difference (PFD) was found 

to be the best method for solving benchmarking problem in 

indicator series when compared with other methods. In this 

paper, we proffered an alternative solution to the 

benchmarking problem. This proposed benchmarking 

method is based on the generalized least squares regression 

model which is grounded on a statistical model that allows 

for the presence of bias and autocorrelated errors in the 

indicator, and the presence of non-binding benchmarks. 

Using the simulated quarterly series by Dagum and 

Cholette ([DC06]), the results show that the method exactly 

preserves the quarter-to-quarter movement, a residual 

adjustment is made, and the final benchmarked series 

converges to the bias-corrected series at the end. None of 

these desirable features was exhibited by the existing 

methods of solving benchmarking problem. 

KEYWORDS: Bias-corrected, Autocorrelated errors, 

Benchmarking, Growth rate, indicator. 

  

INTRODUCTION 

 

Benchmarking is an adjustment of the level of a sub-

annual series to the level of an annual series 

([L+07]). Both time series measure the same 

variable, but at different time intervals and different 

levels of accuracy. The annual series is usually more 

accurate than the sub-annual series and, for this 

reason, it is considered a benchmark. Because the 

two series are coming from different sources, 

discrepancies are usually observed between the 

annual benchmarks and the annual sums of the sub-

annual series. Benchmarking, however, can be 

defined more broadly as the process of optimally 

combining two sources of measurements, in order to 

achieve improved estimates of the series under 

investigation ([CD94]). This adjustment process is 

called benchmarking and the more accurate values 

are called benchmarks. Typically, benchmarks are 

either yearly totals or values observed at a particular 

time-point each year ([AAI17]). The sub-annual 

series is modified so that the annual sums of the sub-

annual series are equal to the corresponding 

benchmarks ([L+0]7). In time series works of 

literatures, this problem, involving either one or 

many time series, is generally known as temporal 

disaggregation ([AAI15]). This is done considering 

two main challenges. The first one is to preserve the 

movement in the sub-annual series as much as 

possible which Denton tried to do but does not allow 

non –binding benchmarks ([Den71]). The second 

one is to account for the timeliness of annual 

benchmarks, in the sense that the benchmarks for the 

observations at the end of the series may not be 

available yet. The presented method is a special case 

of the general regression-based benchmarking model 

proposed by Dagum and Cholette ([DC06]).  Causey 

([CT81]) developed a numerical algorithm that was 

later revised by Trager ([CT81]), showing that there 

was an iterative solution to the problem of 

minimizing the changes to the month-to-month 

changes subject to a set of constraints (the 

benchmarks). The procedure minimizes the changes 

iteratively using steepest descent. Though the first 

solutions were not published, their notes are 

available as appendixes in a research report by 

Bozik and Otto ([BO88]). This method is referred to 

generally as the Causey-Trager method ([CT81]). 

The numerical algorithm was eventually 

programmed into FORTRAN, and the U.S. Census 

Bureau still supports and maintains the FORTRAN 

code. The Census Bureau has used the program for a 

production of benchmarked numbers since the early 

1980s. The program was not designed for 

benchmarking the seasonally adjusted series to 

annual totals from the original series since the 

Census Bureau does not do this type of benchmark 

([HH05]). The aim of this paper is to force the sub-

annual totals (benchmarks) to obey the annual totals 

(benchmarked) using the derived model. 

 

1. METHOD 

 

The sub-annual and annual series are respectively 

denoted by: 
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𝑠𝑡, 𝑡 = 1, 2, 3, … , 𝑇    (1) 

𝑠𝑚, 𝑚 = 1, 2, 3, … , 𝑀    (2) 

 

where 1, 2, ..., T  refers to a set of contiguous 

months, quarter, days, etc; and 1, 2, ..., M to set of 

not necessarily of contiguous periods, e.g. there may 

be a benchmark every “year”. 

The regression-based model consists of the 

following two equations: 

 

𝑠𝑡 = ∑ 𝑟𝑡ℎ𝐵ℎ + 𝜃𝑡 + 𝑒𝑡 = ∑ 𝑟𝑡ℎ𝐵ℎ + 𝜃𝑡 +ℎ
𝑘=1

ℎ
ℎ=1

𝜎𝑡
ℎ𝑒𝑡

∗, 𝑡 = 1, … , 𝑇    (3) 

 

Equation (3) means that the true values are corrupted 

with error and bias, where:  

 

𝐸(𝑒𝑡) = 0, 𝐸(𝑒𝑡𝑒𝑡−1) = 𝜎𝑡
𝜆𝜎𝑡−𝑙

𝜆 𝜔𝑙 

𝑎𝑚 = ∑ 𝑗𝑚𝑡𝜃𝑡 + 𝜀𝑚, 𝑚 = 1, … , 𝑀
𝑡𝐿𝑚
𝑡=𝑡1𝑚

  (4) 

 

Where  

𝐸(𝜀𝑚) = 0, 𝐸(𝜀𝑚
2 ) = 𝜎𝜀𝑚

2 , 𝐸(𝜀𝑚𝑒𝑡) = 0 

The errors 𝜀𝑚 and 𝑒𝑡 are mutually independent 

because the annual and quarterly data come from 

two separate sources, that is, from a survey carried 

out and from record. 

Matrix representation of the model 

Eqns. (3) and (4) can be written thus: 

 

𝑆 = 𝑅𝛽 + 𝜃 + 𝑒, 𝐸(𝑒) = 0, 𝐸(𝑒𝑒′) = 𝑉𝑒  (5) 

 𝑎 = 𝐽𝜃 + 𝜀, 𝐸(𝜀) = 0, 𝐸(𝜀𝜀′) = 𝑉𝜀 , 𝐸(𝑒𝜀′) = 0 (6) 

 

Where  

𝑆 = [𝑆1, … , 𝑆𝑇]′, 𝜃 = [𝜃1, … , 𝜃𝑇]′, 𝑎 = [𝑎1, … , 𝑎𝑀]′ 
Matrix R of dimension T by H contains the H 

regressors (the X’s or the sums of the related series) 

of equation (3) and 𝛽 = [𝛽1, … , 𝛽𝐻] the regression 

parameters. The covariance matrix has this: 

 

𝑉𝑒 = Σ𝜆ΩΣ𝜆     (7) 

 

Where:  

Σ is a diagonal matrix of standard deviations, 

𝜎1, … , 𝜎𝑇 and Ω contains the autocorrelations usually 

following an ARMA error model. 

For an AR(1) error model with parameter |𝜙| < 1, 

the elements of Ω are given by 𝜔𝑖𝑗 = 𝜙|𝑖−𝑗|. 

Temporal sum operator 

Matrix J is a temporal sum operator of dimension M 

by T, containing the coverage fractions, 

 

𝐽 = [
𝑗11 ⋯ 𝑗1𝑇

⋮ ⋱ ⋮
𝑗𝑀1 ⋯ 𝑗𝑀𝑇

] 

 

Where  

𝑗𝑚𝑡 = 0 for 𝑡 < 𝑡1𝑚 or 𝑡 > 𝑡𝐿𝑚, and 𝑡1𝑚 ≤ 𝑡1𝑚 ≤
𝑡𝐿𝑚. 

Each coverage fraction mtj  is placed in row m and 

column t of J. 

J is a design matrix with ones and zeros such that, 

for any variable, say, s, Js yields the annual sums of 

s. 
Equations (5) and (6) can be re-written as 

 

𝑦 = 𝑋𝛼 + 𝑈     (8) 

𝐸(𝑈) = 0, 𝐸(𝑈𝑈) = 𝑉𝑢 = 𝑏𝑙𝑜𝑐𝑘(𝑉𝑒 , 𝑉𝜀) 
 

Where  

𝑦 = [
𝑠
𝑎

] , 𝑋 = [
𝑅 𝐼𝑇

0 𝐽
] , 𝛼 = [

𝛽
𝜃

] , 𝑉𝑢 = [
𝑉𝑒 0
0 𝑉𝜀

] 

Where  

uT VIXy   ,  ,  , ,   are indicators, regressors, 

parameters, identity matrix of dimension T by T, and 

covariance matrix for sub-annual and annual series 

respectively. 

The models (5) and (6) can be written as  

 

[
𝑠
𝑎

] = [
𝑅 𝐼𝑇

0 𝐽
] × [

𝛽
𝜃

] + [
𝑒
𝜀

]   (9) 

 

Model (8) has the form of a standard regression 

model, with the generalized least squares solution 

and can be written as: 

 

�̂� = (𝑋′𝑉𝑈
−1

𝑋)−1𝑋′𝑉𝑈
−1

𝑦 = [
�̂�

𝜃
]   (10) 

 

UV  is the known or true covariance matrix of the 

disturbances u, the covariance matrix of the 

estimates  ̂  is  

 

𝑣𝑎𝑟(�̂�) = (𝑋′𝑉𝑈
−1𝑋)−1 = [

𝑣𝑎𝑟(�̂�) 𝑐𝑜𝑣(�̂��̂�)

𝑐𝑜𝑣(�̂��̂�) 𝑣𝑎𝑟(�̂�)
] (11) 

 

The H first elements of the vector �̂� = [�̂�′    𝜃′] 

contain the estimates of �̂�1, … , �̂�𝐻; the last T 

elements, contains the estimates of 𝜃1, … , 𝜃𝑇; 

similarly the first H rows and columns of 𝑣𝑎𝑟(�̂�) 

contains the covariance matrix of vector �̂�;  and the 

last T rows and columns of 𝑣𝑎𝑟(�̂�), contains the 

covariance matrix of a matrix of the vector 𝜃. 

The solution (10) is obtained only if Vu is invertible, 

which requires that both Ve and Vε be invertible. The 

implication of the latter is that all the diagonal 

elements of the Vε must be greater than zero i.e. all 

the benchmarks must be non-binding. 

Given equation (9), the estimator in (10) can be 

written as  
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[
�̂�

𝜃
] = [

𝑅 𝐼𝑇

0 𝐽
]

−1

([
𝑠
𝑎

] − [
𝑒
𝜀

]) 

 

Making substitution the partitions of ̂  and   , UVX  

in equation (10) the transformations produces 

 

[
�̂�

�̂�
] = [

𝑅′𝑉𝑒
−1𝑅 𝑅′𝑉𝑒

−1

𝑉𝑒
−1𝑅 (𝑉𝑒

−1 + 𝐽′𝑉𝜀
−1𝐽)

]
−1

[
𝑅′𝑉𝑒

−1 0

𝑉𝑒
−1 𝐽′𝑉𝜀

−1]  

              (12a) 

 

Therefore  

 

[
�̂�

�̂�
] = [

𝑅′𝑉𝑒
−1𝑅 𝑅′𝑉𝑒

−1

𝑉𝑒
−1𝑅 (𝑉𝑒

−1 + 𝐽′𝑉𝜀
−1𝐽)

]
−1

[ 𝑅′𝑉𝑒
−1

𝑠
𝑉𝑒

−1𝑠 + 𝐽′𝑉𝜀
−1𝑎

]  

          (12b) 

 

Having the following dimensions:  

 

𝑅 = 𝑇 × 1, 𝑉𝑒 𝑎𝑛𝑑 𝑉𝜀 = 𝑇 × 𝑇, 𝐽 − 𝑀 × 𝑇 

 

From (11)  

 

𝑣𝑎𝑟(�̂�) = [
𝑅′𝑉𝑒

−1𝑅 𝑅′𝑉𝑒
−1

𝑉𝑒
−1𝑅 (𝑉𝑒

−1 + 𝐽′𝑉𝜀
−1𝐽)

]

−1

 (13) 

 = [
𝐸11 𝐸12

𝐸′12 𝐸22
]

−1

= [ 𝐸11 𝐸12

𝐸′12 𝐸22] (14) 

 

Combining (11) and (12)  

 

�̂� = 𝑣𝑎𝑟⌊�̂�⌋𝑅′𝑉𝑒
−1𝑠 + 𝑐𝑜𝑣⌊�̂�, �̂�⌋(𝑉𝑒

−1𝑠 + 𝐽′𝑉𝜀
−1𝑎)  (15) 

�̂� = 𝑐𝑜𝑣⌊�̂�, �̂�⌋𝑅′𝑉𝑒
−1𝑠 + 𝑣𝑎𝑟⌊�̂�⌋(𝑉𝑒

−1𝑠 + 𝐽′𝑉𝜀
−1𝑎) (16) 

 

The solution (10) requires that V be positive 

definite, which excludes the possibility of binding 

benchmarks. The estimator (10) can be expressed as:  

 

�̂� = −(𝑅′𝐽′𝑉𝑑
−1𝐽𝑅)−1𝑅′𝐽′𝑉𝑑

−1[𝑎 − 𝐽𝑠]  (17) 

𝑣𝑎𝑟[�̂�] = (𝑅′𝐽′𝑉𝑑
−1𝐽𝑅)−1   (18) 

 

Where s = indicator series and 𝑉𝑑 = 𝐽′𝑉𝑒
−1𝐽 + 𝑉𝜀. 

The derivation assumes that both Ve and Vε are 

invertible. When V is not invertible, it can be 

replaced by a matrix Vδ equal to 𝑉𝜀 + 𝛿𝐼𝑀 with δ 

close to zero. Parameter δ is then set to 0 after the 

derivation. 

The lower-right partition of (13) corresponding to 

partition E22 in (14) may be inverted using the 

matrix identities ([Jaz70]) and expansion of the 

algebra 

 
(𝐷 + 𝐵𝐶𝐵′)−1 ≡ 𝐷−1 − 𝐷−1𝐵(𝐵′𝐷−1𝐵 + 𝐶−1)−1𝐵′𝐷−1 

(19) 

 

Proof: 

From R.H.S. 

= 𝐷−1 − 𝐷−1𝐵𝐵′𝐷−1(𝐵′𝐷−1𝐵 + 𝐶−1)−1 

= 𝐷−1(1 − 𝐷−1𝐵𝐵′(
1

𝐵′𝐷−1𝐵+𝐶−1))    (20) 

= 𝐷−1 (1 −
𝐷−1𝐵𝐵′

𝐵′𝐷−1𝐵+𝐶−1) = 𝐷−1(
𝐵′𝐷−1𝐵+𝐶−1−𝐷−1𝐵𝐵′

𝐵′𝐷−1𝐵+𝐶−1 ) (21) 

=
𝐷−1𝐶−1

𝐵′𝐷−1𝐵+𝐶−1 =
(𝐷𝐶)−1

𝐵′𝐷−1𝐵+𝐶−1   (22) 

=
1

𝐷𝐶⁄

𝐵′𝐷−1𝐵+𝐶−1 = (
1

𝐷𝐶
) (

1

𝐵′𝐷−1𝐵+𝐶−1)   (23) 

=
1

𝐷𝐶𝐵′𝐷−1𝐵 + 𝐷𝐶𝐶−1
=

1

𝐼𝐵𝐶𝐵′ + 𝐼𝐷
 

(since CC-1=I and DD-1=I) 

=
1

𝐼(𝐵𝐶𝐵′+𝐷)
=

1

𝐵𝐶𝐵′+𝐷
       (24) 

= (𝐵𝐶𝐵′ + 𝐷)−1 or = (𝐷 + 𝐵𝐶𝐵′)−1  (25) 

 

Therefore 

 
(𝑉𝑒

−1 + 𝐽′𝑉𝑒
−1𝐽)−1 ≡ 𝑉𝑒 − 𝑉𝑒𝐽′(𝐽′𝑉𝑒

−1𝐽 + 𝑉𝑒)−1𝐽𝑉𝑒 

≡ 𝑉𝑒 − 𝑉𝑒𝐽′𝑉𝑑
−1𝐽𝑉𝑒 = 𝐸22

−1      (26) 

 

Given 
1

22


E from (26), the matrix inversion in (14) 

is performed by parts using the following formulae: 

 

[
𝐸11 𝐸12

𝐸′12 𝐸22
]

−1

=
[

𝐸22 −𝐸12
−𝐸′12 𝐸11

]

𝐸11𝐸22−𝐸′12𝐸12
   (27) 

𝐸11 =
𝐸22

𝐸11𝐸22−𝐸′12𝐸12
    (28) 

     =
𝐸22

𝐸22(𝐸11−𝐸′12𝐸12𝐸12𝐸22
−1)

    (29) 

     =
1

𝐸11−𝐸′12𝐸12𝐸22
−1 = (𝐸11 − 𝐸′12𝐸12𝐸22

−1)−1 (30) 

 

Therefore 

 

𝐸11 = (𝐸11 − 𝐸′12𝐸12𝐸22
−1)−1   (31) 

𝐸12 =
−𝐸12

𝐸11𝐸12−𝐸′12𝐸12
=

−𝐸12

𝐸22(𝐸11−𝐸′12𝐸12𝐸22
−1)

=

−𝐸12𝐸22
−1(𝐸11 − 𝐸′12𝐸12𝐸22

−1)−1          (32) 

 

Therefore 

 

𝐸12 = −𝐸12𝐸22
−1𝐸11    (33) 

𝐸22 = 𝐸22
−1 − 𝐸12′

𝐸12𝐸22
−1 

= 𝐸22
−1 + 𝐸22

−1𝐸′12𝐸11𝐸12𝐸22
−1   (34) 

= 𝐸22
−1 + 𝐸22

−1𝐸12′(𝐸11 − 𝐸12𝐸22
−1𝐸′12)−1𝐸12𝐸22

−1 (35) 

 

Substituting (31) in the upper left partition of (11) 

yields: 

 

𝑣𝑎𝑟[�̂�] = 𝐸11 = [(𝑅′ 𝑉𝑒
−1 𝑅) − (𝑅′𝑉𝑒

−1)(𝑉𝑒 −

𝑉𝑒  𝐽′ 𝑉𝑑
−1 𝐽 𝑉𝑒)(𝑉𝑒

−1 𝑅)]−1 = (𝑅′𝐽′𝑉𝑑
−1 𝐽 𝑅)−1 (36) 

 

this proves (18).  

Substituting (33) in the upper right partition of (11) 

yields: 

 

𝑐𝑜𝑣⌊�̂�, �̂�⌋ = 𝐸12 = −𝑣𝑎𝑟⌊�̂�⌋(𝑅′𝑉𝑒
−1)(𝑉𝑒 − 𝑉𝑒  𝐽′𝑉𝑑

−1 𝐽 𝑉𝑒) 

= −𝑣𝑎𝑟⌊�̂�⌋ 𝑅′ (𝐼 − 𝐽′𝑉𝑑
−1 𝐽 𝑉𝑒)        (37) 

𝑐𝑜𝑣⌊�̂�, �̂�⌋ = 𝐸12′ = −(𝐼 − 𝑉𝑒  𝐽′𝑉𝑑
−1 𝐽)𝑅 𝑣𝑎𝑟⌊�̂�⌋ (38) 
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Substituting (35) into the lower right partition of 

(11) yields: 

 

𝑣𝑎𝑟⌊�̂�⌋ = 𝐸22 = (𝑉𝑒 − 𝑉𝑒  𝐽′𝑉𝑑
−1 𝐽 𝑉𝑒)

− 𝑐𝑜𝑣⌊�̂�, �̂�⌋(𝑅 𝑉𝑒
−1)(𝑉𝑒

− 𝑉𝑒  𝐽′ 𝑉𝑑
−1 𝐽 𝑉𝑒) 

= (𝑉𝑒 − 𝑉𝑒  𝐽′𝑉𝑑
−1 𝐽 𝑉𝑒) + (𝐼 − 𝑉𝑒  𝐽′𝑉𝑑

−1 𝐽)𝑅 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′(𝐼 −

𝐽′𝑉𝑑
−1 𝐽 𝑉𝑒)     (39) 

 

Substituting (36), (37), (38) into (15) and expanding 

leads to cancellations and simplifications  

 

�̂� = 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′𝑉𝑒
−1 𝑠

− 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′(𝐼 − 𝐽′𝑉𝑑
−1 𝐽 𝑉𝑒)(𝑉𝑒

−1 𝑠

+ 𝑉𝜀
−1 𝑎) 

= 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′𝑉𝑑
−1 𝐽 𝑠 + 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′𝐽′𝑉𝑑

−1 (𝐽 𝑉𝑒  𝐽′𝑠 −

𝑉𝑑)𝑉𝜀
−1 𝑎      (40) 

 

Replacing the inner occurrences of 𝑉𝑑 in the last 

equation by 𝐽 𝑉𝑒 𝐽′ +  𝑉𝜀 gives: 

 

�̂� = 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′𝐽′𝑉𝑒
−1 𝐽 𝑠 + 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′𝐽′𝑉𝑑

−1 (𝐽 𝑉𝑒  𝐽′ −

𝐽 𝑉𝑒  𝐽′ − 𝑉𝜀)𝑉𝜀
−1 𝑎    (41) 

�̂� = −(𝑅′𝐽′𝑉𝑑
−1 𝐽 𝑅)−1 𝑅′𝐽′𝑉𝑑

−1 (𝑎 − 𝐽𝑠)  (42) 

 

Substituting (36), (37), (38) into (16) and expanding 

produces: 

�̂� = −(𝐼 − 𝐵 𝐽)𝑅 𝑣𝑎𝑟 ⌊�̂�⌋ 𝑅′𝑉𝑒
−1 𝑠 + ((𝑉𝑒 − 𝐵 𝐽 𝑉𝑒) +

(𝐼 − 𝐵 𝐽)𝑅 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′(𝐼 − 𝐽′𝐵′)) (𝑉𝑒
−1 𝑠 + 𝐽′𝑉𝜀  𝑎) (43) 

 

Where 𝐵 = 𝑉𝑒  𝐽′𝑉𝑑
−1. 

After lengthy algebraic transformations and 

collecting the terms in 𝐽′𝑉𝜀  𝑎 and s we obtain: 

 

�̂� = 𝑠 − 𝑉𝑒  𝐽′𝑉𝑑
−1 𝐽 𝑠 + 𝑉𝑒  𝐽′𝑉𝑑

−1 𝐽 𝑅 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′𝐽′𝑉𝑑
−1 𝐽 𝑠 −

𝑅 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′𝐽′𝑉𝑑
−1 𝐽 𝑠 − 𝑉𝑒  𝐽′⌊𝑉𝑑

−1 𝐽 𝑉𝑒  𝐽′ −  𝐼⌋ 𝑉𝜀
−1 𝑎 −

⌊𝑅 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′𝐽′⌋ ⌊𝑉𝑑
−1 𝐽 𝑉𝑒  𝐽′ − 𝐼⌋ 𝑉𝜀

−1 𝑎 +

⌊𝑉𝑒  𝐽′𝑉𝑑
−1 𝐽 𝑅 𝑣𝑎𝑟⌊�̂�⌋ 𝑅′𝐽′⌋ ⌊𝑉𝑑

−1 𝐽 𝑉𝑒  𝐽′ − 𝐼⌋ 𝑉𝜀
−1 𝑎 (44) 

 

The above models can be implemented using 

MATLAB mathematical software for modeling; the 

aim of this paper is to apply the model described 

above in solving benchmarking problem of 

economic data. 

 

2. DATA AND ANALYSIS 

 

In order to apply the derived model, the simulated 

quarterly series by Cholette and Dagum (2006) is 

used in this paper. It is the indicator series in table 1: 

 
Table 1: Indicator series, bias-adjusted, benchmarked and the growth rates 

Date 

Indicator 

(s) 

Bias-adj 

(S*) 

Benchmarked 

(alt. method) 

Annual 

Totals 

The growth rate in 

indicator series 

The growth rate in  

benchmarked series 

1998-1 85.00 136.75 134.81 

   1998-2 95.00 146.75 144.10 

 

0.11 0.06 

1998-3 125.00 176.75 173.12 

 

0.24 0.17 

1998-4 95.00 146.75 141.77 494.00 -0.32 -0.22 

1999-1 85.00 136.75 129.93 

 

-0.12 -0.09 

1999-2 95.00 146.75 137.36 

 

0.11 0.05 

1999-3 125.00 176.75 163.80 

 

0.24 0.16 

1999-4 95.00 146.75 128.90 560.00 -0.32 -0.27 

2000-1 85.00 136.75 112.16 

 

-0.12 -0.15 

2000-2 95.00 146.75 120.63 

 

0.11 0.07 

2000-3 125.00 176.75 154.14 

 

0.24 0.22 

2000-4 95.00 146.75 133.07 520.00 -0.32 -0.16 

2001-1 85.00 136.75 138.30 

 

-0.12 0.04 

2001-2 95.00 146.75 156.70 

 

0.11 0.12 

2001-3 125.00 176.75 189.11 

 

0.24 0.17 

2001-4 95.00 146.75 155.78 640.00 -0.32 -0.21 

2002-1 85.00 136.75 136.38 

 

-0.12 -0.14 

2002-2 95.00 146.75 142.21 

 

0.11 0.04 

2002-3 125.00 176.75 172.88 

 

0.24 0.18 

2002-4 95.00 146.75 148.43 600.00 -0.32 -0.16 

2003-1 85.00 136.75 149.44 

 

-0.12 0.01 

2003-2 95.00 146.75 165.79 

 

0.11 0.10 

2003-3 125.00 176.75 198.12 

 

0.24 0.16 

2003-4 95.00 146.75 166.66 680.00 -0.32 -0.19 

2004-1 85.00 136.75 151.28 

 

-0.12 -0.10 

2004-2 95.00 146.75 157.35 

 

0.11 0.04 

2004-3 125.00 176.75 184.48 

 

0.24 0.15 

2004-4 95.00 146.75 152.39 661.00 -0.32 -0.21 
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Figure 1: Indicator series to benchmarked series using the alternative method 

Figure 2: Growth rates graph for indicators and benchmarked series (alt method) 

 
Figure 3: Growth rates graph for indicators and benchmarked series (Prorata) 
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Table 2: Standard deviation and coefficient of 

variation of the benchmarked series methods 

Method Std. CV 

PLD 34.79 22.90 

AFD 20.82 13.70 

PFD 27.38 18.02 

ASD 21.12 13.90 

PSD 27.53 18.11 

PRORATA 28.36 19.11 

ALT.M 20.71 13.63 

 

Where PLD, AFD, PFD, ASD, PSD, PRO RATA, 

and ALT.M are the proportional level difference, 

additive first difference, proportional first difference, 

additive second difference, proportional second 

difference, pro rata method and the alternative 

method respectively. 
 

3. DISCUSSION OF RESULTS  
 

It is discovered in table 1 that the benchmarked 

series later converged to the bias-adjusted series (as 

shown in fig. 1). The growth rate (the first order 

difference using the sub-annual series) contains both 

negative and positive values, this is in order and 

expected since economic data behave in such 

manner many times. Another reason behind this is 

because the benchmarks are non-binding, therefore 

the variance cannot be equal to zero. The quarterly 

in the indicator series has been made to obey the 

annual totals at the application of the alternative 

method of solving benchmarking problem.  

The growth rates of the indicator series to the growth 

rates of the benchmarked series are presented in fig. 

2 and 3. The growth rates are not similar in some 

quarters, this may be as a result of the difference in 

the simulated indicator series, but quarters, 2, 9, 14, 

17 and 22 similar growth rates which shows that the 

benchmarking method ensures good movement 

preservation from the indicator series to the 

benchmarked series (). 

Comparing the alternative method with the existing 

ones using standard deviation and coefficient of 

variation, table 2 shows that the ALT.M preserves 

the quarter-to-quarter movement better than the 

existing methods. 
 

4. CONCLUSION AND RECOMMENDATION 
 

Since the alternative method performs benchmarking 

better than the other methods it is therefore 

recommended for use whenever data reconciliation 

is necessary. 
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