Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

Aspect Oriented Programming Challenges

Dr. Ioan Despi, Lecturer,
University of New England, Armidale, Australia
Dr. Lucian Luca, Associate Professor,
“Tibiscus” University, Timisoara, Romania

ABSTRACT. Separation of concerns is an_important software
engineering principle, meaning the ability .to identify, encapsulate,
and manipulate those parts of software that/are relevant to a particular
concern (concept, goal, purpose). A new emerging paradigm is
introduces and discussed — Aspect Oriented Programming, that makes
possible to express those programs that OOP. fails to support.

1 Introduction

Ten years ago arevolutionary movement started in the object-oriented (OO)
developer community that tried to bring a new level of flexibility to today's
complex object-oriented programming (OOP) paradigms. It's called Aspect-
Oriented Programming (AOP), a simple idea that promises radical results
for systems that use similar objects to interact with multiple classes - called
cross-cutting concerns. Examples of these concerns would be logging,
synchronization, -and error handling - for instance. OOP languages don't
handle these cross-cutting concerns - or aspects - very well from a design
standpoint, which results in tangled code. AOP was developed to separate
those concerns from the rest of the program to allow for more reusability
and to avoid duplicating code. Informally, if the main program is designed
from a top/down point of view, aspects would be introduced from the
left/right point of view and used by the program when needed.
Aspect-Oriented Software Development (AOSD) appears as a new
technology that focuses on the separation of cross-cutting concerns.
Although the AOSD has been working towards a solution since 1995, it still
hasn't become generalized enough for most programmers to understand and

56

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

use confidently. According to many voices in the AOP community, which —
by the way — numbers only about 2,000 registered people worldwide, only
about 10-15% (300) of programmers are experienced enough to use AOP in
an OOP environment.

AOP doesn't require a new syntax or way of programming and it can be
introduced into OOP applications incrementally. There are three approaches
AOP takes when used by programmers - language-based, at the metadata
level, and code instrumentation at program runtime. All three are used to
complete what researchers call the aspect weaver. What's missing today is
standardization of the approaches used in AOP, maybe AOP_has to go to
some packaging into something a novice or mid-level programmer can type
and understand.

Using AOP doesn't deliver speed enhancements at’compilation‘time or
a drastic reduction in memory usage when its tun. What it delivers,
however, is a level of flexibility you can't find in today's larger programs. It
lets programmers develop components (or aspects) of an object so changes
can be made in one place, instead of throughout the hierarchies. While the
technology is being used at the university Ph.D. thesis level and within the
research laboratories like Microsoft /and IBM, AOP doesn't get a lot of
attention from the people who could provide the most growth opportunities
for the platform: IT managers.

2 Concerns

A concern is any issue in the domain of a problem, a property of an area of
interest of the system. It can be a primitive one (e.g., buffering, caching) or
a complex one (e.g., dependability, safety). More, a concern can be
functional (e.g., business rule) or non-functional (e.g., transaction
management).

The ability to identify, encapsulate, and manipulate only those parts of
the software that are relevant to a particular concept, goal or purpose is
called Separation of Concerns (SoC) and it is a main principle in software
engineering [OTO01].

SoC is closely related to composition and decomposition in
programming languages, introduced in [Dij76] when talking about design
process. In Dijkstra's opinion, the design process is about breaking down the
system into units of behaviour or function, often known as functional
decomposition. By splitting a large subject into smaller units, the
complexity of the system is reduced, then by composition — the assembly of

57

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

these smaller parts into a system — the whole functionality is (re)achieved.
The definition says nothing about Zow to decompose a system and there are
a lot of attempts and approaches to do it. The only clue is that reasonable
criteria should be used in decomposing systems and the separation of
concerns principle [Par72] states that every part of a decomposed system
should be responsible for a well-defined task or concern of the system. It is
desirable to reason about every concern in isolation so they should have as
little knowledge about the other concerns.

In many situations separation of concerns is not easy to achieve. Once
software systems reach a certain complexity, the modularisation.constructs
provided by current programming languages and environments _fall. short.
Current software engineering techniques generally provide a dominant
decomposition mechanism that is not suitable to capture and represent all
kinds of concerns that can be found in software applications. This problem
is identified in [TOH99] as the tyranny of dominant decomposition: modern
languages and methodologies permit the separation and encapsulation of
only one kind of concern at a time. Examples of tyranny decomposition are
functions in functional paradigm, rules in rule-based systems and classes in
OO paradigm. Hence the conclusion it is impossible to encapsulate and
manipulate all the diverse and heterogeneous concerns in only one of the
decomposition mechanisms.

3 OO Tyranny

OOP allows the designer to express the essence of the design in small
amounts _of syntactic material. In this way, OOP removes a difficulty from
the design but — unfortunately -- it cannot do more than remove accidental
difficulties from the design and the complexity of the design itself is still
present [Bro87].

The fundamental aspect of OOP is modularity through encapsulation.
Modularity decomposes complex problems into manageable modules. In
well decomposed systems the modules show low coupling, i.e.
interdependencies between modules are minimised, and high cohesion, i.e. a
module's responsibilities are highly related. Modularity is a specialisation of
the separation of concerns principle in that it separates software into
components according to functionality and responsibility.

OOP modularise concerns by building hierarchies of classes through
classification and specialisation. The problem here is the quickly increasing
complexity of the system, due to the many objects and inter-relations

58

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

between these objects. This leads to high coupling (strong dependencies
between objects) and low cohesion (weak bindings inside objects), the
opposite of what you get with good modularity (that is, objects with strong
inner relations and few coupling to other objects) [EKS92].

OOP was useful regarding the separation of functional concerns of a
system in class hierarchies. But across these hierarchies, concerns may exist
that are not possible to generalise through inheritance or polymorphism. It
seems that OOP approach of modularising software systems according to a
single concern does not provide enough structure for developing complex
systems. If we decompose a system into a class hierarchy, some general
issues cannot be dealt with in a modularised way. Concerns not represented
in the current system decomposition have to be forced onto the primary
decomposition. These concerns are called cross-cutting concerns..Concerns
that cross-cut these functional decompositions do not fit equally well into
the OO model and have potentially harmful impact on software engineering
quality factors (e.g., adaptability, maintainability, extensibility, and
reusability).

As an example, let us consider a credit card processing system: its core
concern would process payments, while its system-level concerns would
handle logging, transaction integrity, authentication, security, performance,
aso. Hence the credit card processing system consists of several concerns (at
least system-level ones) that cross-cut multiple modules. OOP techniques
for implementing such concerns result in systems that are invasive to
implement, tough to understand, and difficult to evolve.

The presence of these hidden concerns is revealed in two ways:

1. the concern's code is scattered throughout the system, that is we have
the actual functionality scattered across multiple classes as redundant
code.

2.the concern's code is tangled with other code, that is two or more
collocated concerns overlap each other.

As a consequence, hidden concerns can lead to:

1. inconsistency when modifying the code

il. poorer maintainability

iii. less readable code

iv. inflexible code, and

v. violations of code standards and development procedures.

In the mean time, a proper separation of concerns has a number of
benefits, divided in the following categories [Ost03] :

i. Comprehensibility. Putting together pieces of code otherwise non-
contiguous in the program increases our understanding about them

59

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

without having to know the structure of the whole system.

ii. Reusability'. The more a piece of code concentrates on a single
concern, the more likely to reuse it in different contexts.

iii. Scalability’. With a good separation of concerns we should be able to
escape Brooks' law’, because the required communication and coor-
dination is minimised. More, from a compiler perspective, program
parts with little dependencies on other program parts make it easier to
perform modular checking — that is, check and compile a single part
in isolation.

iv. Maintainability. 1t is easier to maintain if we can localise.a concern
in a single place.

The separation of concerns is a recognised problem in software
engineering and a lot of work was done to solve it. At the beginning,
separation of concerns was more oriented towards the implementation,
dealing with concerns that are tangled in the code. Then, Software
engineering community recognised the need of separation of concerns
through the whole software development cycle, starting with requirements
elicitation and specification, and going through design, implementation,
testing and so on. The new technology that is used is called Aspect-Oriented
Software Development (AOSD) and'it allows to separately specifying the
concerns of a system and some descriptions of their relationships and then it
provides mechanisms to weave or compose them together into a coherent
program [EFBO1].

4 Approaches

The first question to ask-here is what infrastructure is needed to support
AOSD? From the programmer point of view, we must supply aspect-
oriented (sub) languages that are based on the constructs and syntax that the
programmer is most familiar with, as well as features to manipulate the
cross-cutting characteristics of concerns. At the implementation level, the
aspect specifications must weave with the code and at runtime the support
for aspect specification and integration should not degrade performance.

A number of post-object technologies have been proposed, including

—

Reusability means that one piece of software is used in multiple places.

2 Scalability refers to a reasonable relation between cost and size of a software system.

3 Brooks' Law [Bro75] states that adding more people to a software project makes it later,
that is -in software engineering- Time <>Size/People

4 Maintenance means to add, remove or change a particular concern.

60

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

generic programming [Aus99], generative programming [CEO00],
computational reflection [Mae87], and the broad category of Advanced
Separation of Concerns (AsoC). AsoC provides a software developer with
a method of software decomposition more powerful than OOP provides
alone. Different AsoC techniques define different programmatic abilities to
reflect upon and modify the behaviour of a system. We briefly discuss some
of them in the following subsections.

4.1 Composition Filters

Composition filters is may be the oldest composition method [Ber94]. The
Composition Filters (CF) model is an evolution of the object model by
means of the Sina language. The main idea is to wrap every object with
Filters, i.e., entry code, which can catch and manipulate messages. Filter can
swallow a message, they can delegate (to implement inheritance, or extend),
or can synchronize with other objects (Synchroenisation protocols), or can
log, or can modify (override behaviour, adapt). To describe a range of data
abstractions, the authors used the term of interface predicate, then instead of
extending the language with numerous new language constructs, the
framework of composition filter (CF)._was introduced which integrates all
these desired constructs and interface predicates into a single, unified model
[BAO1]. A composition-filter object consists of two parts: an interface and
an implementation part. The interface is in charge with messages passed
between objects. It consists of one or-more input and output filters, optional
internal and external objects and method header declarations. Filters are
controlled by conditions. Filter names, method headers and conditions
names can be made visible to the clients, but the implementation part is
hidden: Each incoming message must pass a bank of input filters, each of
which could cause the message to be blocked, diverted to another object, or
modified in some way. Any message sent from the object must pass through
a bank of output filters, with similar functionality. Filters work in a similar
way as meta object protocol change (MOP change). Filters modify the MOP
method Class.acceptMessage and filters can implement aspects (e.g.,
debugging) and views.

4.2 Meta-Object Programming

Some of the original inspiration for AOP comes from research in dynamic,

reflective object-oriented languages and meta-object protocols.
Computational reflection [Smi84] enables a program to access its

internal structure and behaviour and to programmatically manipulate that

61

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

structure, thereby modifying its behaviour. The process of getting access to
reflective data is called reification.

Meta-Object Protocol (MOP) [KRB91] provide the ability for a
program to reason about itself. MOPs offer a refined form of reflection that
focuses on modifying and reacting to object behaviour at runtime or
structurally reflecting upon code at compile time. At the origin, the Meta-
Object Protocol is a protocol layer in Common Lisp which contains a set of
default rules about how methods are added, how classes inherit from super-
classes, aso, that is, how the CLOS object system works. These protocols
are built into the object system, and are enforced automatically, making the
application development process much more efficient, as the protoecols do
not have to be manually invoked by the programmer wherever they are
needed throughout the application. The typical features of a MOP-include
programmatic control of dynamic dispatch and subelassing of metaobjects
such as classes and methods. More, the default rules of the MOP can also be
modified, enabling the programmer to actually customize the object system
to suit the application.

Using the MOP, the developer can model any object system he wants,
even the object system of another language such as Java. MOPs for OO
systems provide meta-objects attached to other objects or control or data
flow structures and provide the ability to intercept base operations in the
code and jump to the relevant meta-level meta-object. Java provides a kind
of reflection capability. A’ Java program can ask for the class of a given
object, find the methods of that class, and then invoke one of those methods.
The Class and Method classes in Java are considered meta-classes and their
instances are considered metaobjects. A metaobject protocol defines
execution of an application in terms of behaviour implemented by
metaclasses. Unfortunately, Java's reflection capabilities are not complete;
it'sca kind of read-only property: a program can query the methods of a
class, but it cannot change them, whereas a full MOP allows modification of
any meta-information that can be reified. More, Java does not allow
subclassing of metaclasses Class and Method. Using the terminology of
[KRB91], one can say that Java provides introspection but not intercession.
Other OO languages, such as C++, provide even less in the way of
computational reflection.

4.3 Adaptive Programming

Adaptive Programming (AP) [Lie96] is a novel programming style that has
been invented and developed by the Demeter Research Group at The

62

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

Northeastern University in Boston. AP is a methodology rather than a
concrete technology. It provides a high-level interface to conventional OOP,
aiming at the production of better evolvable and maintainable code. AP
decouple the class graph and behaviour of OO software along two
dimensions, by using the Law of Demeter. It decomposes behaviour from
underlying class graph, so modifications can be made to either dimension,
without having negative side-effects on the other. Unfortunately, the two
dimensions are not completely separated, they overlap and so the two
dimensions of AP are not orthogonal. There must be some dependency
between them because algorithms are always bound to data structures.
Generally speaking, one can say that AP implements ideas of multi-
dimensional separation of concerns [TOHS99].

The Law of Demeter [LO99] is a generally accepted design-style rule.
It was found by Holland during research on the Demeter project in 1987.
The law states:

Each unit should have only limited knowledge about other units:
only units 'closely’ related to the current unit.

In other words, the law promotes the principle of least knowledge, that
is units shall not make assumptions about the whole environment but only
about their immediate neighbourhood: A class should not rely upon the
structure of other classes in the system except for an immediate set of
neighbours. The main idea is to avoid chains of invocations, such as
C.0,.0,.0; in the program code, because (in this case) the class C would
make unnecessary assumptions about the class graph. For instance, C
assumes that the class returned by the operation O; declares and operation
0;. The code may break as soon as O; returns another class. Instead, the
Law of Demeter demands O; to propagate the message to O, which will
propagate it further to O3 [Lie96]. The law improves adaptiveness but the
side effect is the time and space overhead required by the wrapper methods
that propagate the message. The overall structure of the class hierarchy is
discovered by the runtime system in the form of a UML-like class graph,
and programmatic traversal of this structure is permitted using the adaptive
visitor design pattern and a traversal strategy [LP97]. The traversal
strategies specify the collaborating classes of operations, they define
traversals on class graph, without enumerating all the classes, but by setting
some minimal constraints that a concrete class graph must meet so that the
traversal graph can be built. The actual behaviour is realised by adaptive
visitors, which encapsulate the functionality of entire operations. The
combination of a traversal strategy and an adaptive visitor is also known as
a propagation pattern and all the above principles of AP operate under the

63

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

term structure-shy programming. In general, an AP-enabled software is
much adaptive (able to adapt to a new class graph) if has been developed
with these principles in mind.

4.4 Subject-Oriented Programming

Subject-oriented Programming (SOP) is a program composition
technology from IBM initiated by H. Ossher and W. Harrison [HO93]. The
work is based on the observation that many objects in a software system
play different roles during their lifetimes. In tool and application:integration,
it is common for different tools and applications to associate different states
and behaviours with a same object. Their example is a Tree object, playing
roles as a home to a Bird object, a Logger object, an Accountant object, aso.

A subject is a collection of state and behaviour specifications pertinent
to a particular application or tool. A subject is“definitional, it does not
contain itself any state, it is a collection of class fragments whose class
graph models its domain in its own subjective way. A subject may be a
complete application in itself, or it may be an incomplete fragment that must
be composed with other subjects to produce a complete application. Subject
composition combines class’ hierarchies to produce new subjects that
incorporate functionality from existing subjects.

Subject-oriented programming involves dividing a system into subjects
and writing rules to compose them correctly. Different subjects can
separately define /and operate upon- shared objects, without any subject
needing to know the details associated with those objects by other subjects.
Subject activation provides an executing instance of a subject, including the
actual data manipulated by a particular subject. Composition rule specifies
in detail how the components are to be combined. An object identifier (0id)
is the globally known unique identification of the object as it appears in the
context of one or more subjects of interest. Object means the state and
behaviour associated with an object identifier by that subject and there is no
global concept-of class.

SOP is a language-independent technology. IBM have built support for
subject-oriented programming in C++ as an extension of the IBM
VisualAge for C++ Version 4 (VAC++) compiler and environment, in Java
as Hyper/J, that supports multi-dimensional separation of concerns, and in
ENVY/IBM Smalltalk.

64

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

4.5 Intentional Programming

Intentional Programming (IP) provides a natural, modular way for a
programmer to manufacture a software system. IP enables programs to be
written and viewed in a variety of specific notations. IP allows the
programmer to specify a language-neutral intent through an easy to
manipulate interface, and then IP can generate code in any target language.
The technology was coined by Charles Simonyi's team while he was
working at Microsoft Research [Sim95]. IP belongs more to Model-Driven
Architectures (MDASs) and code generation tools than to AOP. AOP looks at
programs and seeks cross-cutting aspects which localise the expression of
that aspect (with all the benefits that such localisation affords), whereas IP
looks at the specifications (the stakeholders concerns) and tries to faithfully
represent those concerns in an XML tree-like form.

4.6 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) addresses the problem of the
dominant decomposition by implementing the base program (addressing the
dominant concern) and several aspect programs (each addressing a different
cross-cutting concern) separately and then weaving them all together into a
single executable program. Each aspect deals with a particular concern and
is implemented by a special-purpose type.

4.6.1 AOP Concepts

The two major /features that define an aspect-oriented system are
quantification and obliviousness [FF00]. Quantification refers to the fact
that a piece of code may affect another, completely separated piece of code
somewhere else in the system. One can distinguish between static (source
code) and dynamic (runtime) quantification. More, static quantifications are
divided in black box (made only over the public interface) and clear box
(made over the parsed structure of the underlying code). Dynamic
quantifications are made over run-time events, like calling a subprogram or
raising an exception. Obliviousness refers to the fact that the affected piece
of code has not been specially prepared to receive this modification.

Recall [KLM97] concerns are properties or areas of interest in the
system and they can be implemented as components (if can be cleanly
encapsulated in a generalised procedure) or as aspects (if cannot be cleanly
encapsulated in a generalised procedure). Concerns crosscut if the methods
related to those concerns intersect, both inside a class or over several

65

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

classes. AOP provides a way to encapsulate concerns. A location which is
affected by one or more crosscutting concerns is called join point. A
programmer can add here new actions, before or after the original code
execution, on the static or dynamic structure of the program. An aspect is a
modular unit of crosscutting concerns. Each aspect can be expressed in a
separate and natural form, and can be automatically combined together into
a final executable form by an aspect weaver. As a result, a single aspect can
contribute to the implementation of a number of procedures, modules, or
objects, increasing reusability of the code. Now is obvious that every AOP
language should have three critical elements for separating.-crosscutting
concerns: (i) a join point model, (ii) a means to identify join points;and (iii)
an implementation tool for the join points [EAKO1].

4.6.2 AOP Programming Languages

Heron is a new open source, general purpose, strongly typed, imperative
programming language with built-in support for object oriented (OOP),
interface oriented (IOP) aspect oriented (AOP) and generic programming
techniques (http://www.heron-language.com). The Heron syntax is a mix of
Pascal, Java and C++. Heron.is designed primarily as a compiled language
but the Heron language specification includes an easily interpreted subset
called HeronScript.

AspectJ is a simple general-purpoese extension to Java that provides for
implementation of crosscutting concerns (http://www.aspectj.com). Aspect]
identifies join points in the execution flow of a Java program, as nodes in a
simple runtime object call graph. These nodes are the points at which an
object receives a method call and points at which an attribute of an object is
referenced. The edges are control flow relations between the nodes.
Pointcuts are a means to make reference to a set of join points and to
manipulate certain values captured in those join points. Advices are modules
that encapsulate the crosscutting implementations upon pointcuts. Aspects
are units of modular crosscutting implementation.

JBoss (http://www.jboss.org) is one of the most popular Java
application servers in the industry and is the de facto Java application server
development standard. It was developed as open source software, and passes
over four million downloads. JBoss includes full support for J2EE-based
APIs, that is Java objects can leverage features such as transactions and
security that are usually reserved for J2EE objects. These features are
provided as a collection of predefined aspects, and can be applied to
application objects via dynamic weaving, without requiring the application
itself to be recompiled. In other words, the JBoss AOP framework allows

66

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

developers to write plain Java objects and add or remove some aspects
(locking, encryption, and logging) later at runtime. JBoss is available at.

AspectWerkz (http://aspectwerkz.codehaus.org/) is a dynamic, fast, and
free AOP framework for Java that offers both offline and online aspect
weaving mechanisms. The offline mode allows aspects to be integrated
("woven") into application code before the application is deployed. The
online mode weaves the aspects at class load-time in a transparent way.
Both implement dynamic AOP concepts that allow developers and system
operators to add, remove, and modify aspects during the execution of an
application. One can choose between an XML-based notation.or.on a Java
framework.

5 Conclusions

Aspect-oriented programming claim to contribute to solve the problems
mentioned for OOP so one can ask if it will replaceithe methodologies we
know today. AOP is a very important paradigm that gives the programmer
the opportunity to move distracting support functionality away from the
primary code. There is no risk for inconsistency since a modification of the
aspect code will be applied everywhere the aspect is used. Maintainability is
improved as changes only have to be performed in one place. In this way,
AOP will probably add a new standard to programming, but it will not
replace anything we use today, in the same way as OOP did not replaced
procedural and functional programming. They are a part of OOP and so will
OOP be in AOP.

AOP complements OOP by facilitating another type of modularity that
puts together the implementation of a crosscutting concern into a single unit.
The< main benefits of AOP come from its ability to modularise
implementations of crosscutting concerns. AOP strives to overcome the
problems caused by code tangling and code scattering, improving thus
productivity, reusability and the evolution of code. Because every concern is
addressed separately with minimal coupling, the result is a system with less
duplicate code, a modularised implementation even in the presence of other
crosscutting concerns. This output is much easier to understand and
maintain.

The main problem with AOP is that it adds a new dimension of
possibilities and another one of complexity, hence the danger to keep it as
simple as possible such that ordinary programmers can use it. AOP
complexity comes from the new mechanisms and tools used in the

67

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

implementations. Because AOP is actually a new paradigm, its application
comes with the same sort of problems as when going from procedural
programming to OOP. For instance, AOP is not very well tested and
documented, and there is a lack of specific development tools.

AOP introduces a new paradigm, a new way of handling crosscutting
concerns, a problem that is hard to solve in OOP. The future works for
AOP.

References

[Aus99] Austern, M.H. — Generic Programming and the STL. Addison-
Wesley, 1999

[BAOI] Bergmans, L.; Aksit, M. - Composing multiple concerns using
composition filters. Comm. Of the ACM (CACM) 44(10):51:57,
October 2001

[Ber94] Bergmans, L. - The Composition Filters Object Model. Dept of
Computer Science, University of Twente, The Netherlands, 1994

[Bro75] Brooks, F.P. - The Mythical Man-Month. Addison Wesley 1975

[Bro87] Brooks, F.P. — No'" Silver Bullet: Essence and Accidents of
Software Engineering. Computer 20(4):10:19, April 1987

[CEO0] Czarnecki, K.; Eisenecker, U. - Generative Programming:
Methods, Tools, and Applications. Addison-Wesley 2000

[Dij76] _Dijkstra, E.W. = A Discipline of Programming. Prentice Hall,
1976

[EAKO1] Elrad, T.; Aksit, M.; Kiczales, G.; Lieberherr, K.; Ossher,
H.-Discussing Aspects of AOP. CACM 44(10):33-38, Oct 2001

[EFBO1] Elrad, T.; Filman, R.E.; Bader, A. - Aspect-oriented pro-
gramming: Introduction. CACM 44(10):29-32, 2001

[EKS92] Eder, J.; Kappel, G.; Schrefl, M. — Coupling and cohesion in
object-oriented systems. In Conf. on Information and Knowledge
Management, Baltimore, USA, 1992

[FFOO] Filman, R.E.; Friedman, D.P. — Aspect-oriented program-ming
is quantification and obliviousness. In Proc. Of the ACM
OOPSLA 2000 Workshop on Advanced Separation of Concerns.
Minneapolis, Oct. 2000

68

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

[HO93] Harrison. W.; Ossher, H. — Subject-Oriented Programming: a
critique of pure objects. In Proc. Of the 8™ annual conf,
OOPSLA, Washington DC, pp. 411-428, 1993

[KLM97] Kiczales, G.; Lamping, J.; Menhdhekar, A.; Maeda, C.;
Lopez, C.; Loingtier, J. M.; Irwin, J. — Aspect Oriented
Programming. In Aksit M, Matsuoka S (eds) — Proceedings
European Conference on Object Oriented Programming, vol.
1241, pp 220-242, Springer Verlag, 1997

[KRB91] Kiczales, G.; des Rivieres, J.; Bobrow, D. G. - The Art of
Metaobject Protocol. MIT Press, Cambridge, MA, 1991

[Lie96] Lieberherr, K. — Adaptive Object-Oriented Software: The
Demeter Method with Propagation Patterns. PWS Publishing
Company, Boston, MA, 1996

[LO99] Lieberherr, K.; Holland, 1. — Assuring Good Style for Object
Oriented Programs. IEEE Software, pp 38-48, 1989

[LP97] Lieberherr, K., Patt-Shamir, B. - Traversals of Object-
Oriented Structures. Specification and Efficient Implementation.
Technical Report NU-CCS-97-15, College of Computer Science,
Northeastern University, Boston, MA, 1997

[Mae87] Maes, P. — Concepts and experiments in computational
reflection. In Conf. Proc..On OOPSLA, Orlanda, FL, pp. 147-
155, ACM Press, 1987

[Ost03] Ostermannn, K. = Modules for Hierarchical and Crosscutting
Models. =~ PhD Thesis, Technischen Universitat Darmstadt,
Germany, April 2003

[OTO1] Ossher, H.; Tarr, P. — Using multidimensional separation of
concerns to (re)shape evolving software. CACM 44(10):43-50,
2001

[Par72] Parnas, D.L. - On the criteria to be used in decomposing
systems into modules. CACM 15(5):330-336, 1972

[Sim95] Simonyi, C. - The death of computer languages, the birth of
Intensional Programming. Technical Report MSR-TR-95-52,
Microsoft Research, 1995

[Smi84] Smith, B. — Reflection and semantics in Lisp. In Conference
Record of POPL84: The 11th ACM SIGPLAN-SIGACT

69

Anale. Seria Informatica. Vol. II fasc. I

Annals. Comeuter Science Series. 2™ Tome 1% Fasc.

Symposium on Principles of Programming Languages, pp 23-35,
1984

[Sul01] Sullivan, G.T. — Aspect Oriented Programming Using
Reflection. CACM 44(10):95-97, Oct. 2001

[TOHS99] Tarr, P.; Ossher, H.; Harrison, W.; Sutton, S.M.—N Degrees
of separation: Multi-dimensional separation of concerns. Proc.
Of the 1999 Intl. Conf. On Software Engineering, pp. 107-119,
IEEE Computer Society Press, ACM Press, 1999

70

