Anale. Seria Informatica. Vol. III fasc. I

Annals. Comeuter Science Series. 3™ Tome 1 Fasc.

Designing and implementing an
customizable table view for various
data structures using OOP with C++

Ing. Dan Andrei Stanciu
Universitatea “Tibiscus” Timisoara

REZUMAT. O vizualizare tabelard a datelor definite de o aplicatie
este foarte utila pentru a crea o imagine de-ansamblu dintr-o singura
privire asupra continutului. Pentru aceasta s-a dezvoltat cu ajutorul
programarii orientate pe obiecte o componentd grafici apta de a
reprezenta date pe randuri §i coloane, total controlabila din punct de

particularizari de comportament si aspect grafic.

This paper will debate on the advantages of OOP component design and
will exemplify them though the design and implementation of a table or grid
control. A grid control that is data-aware, that has a connection with a list of
data, thus .creating. a framework similar to the MFC document/view
framework, the list of data representing the document that is viewed through
the grid control, but also this framework is best used by interfacing it with
the MFC document/view framework.

Main Frame

Document
A \4
Data list |[€------ > Grid View

Figure I The interaction within the MFC framework and the data-grid
framework
177

Anale. Seria Informatica. Vol. III fasc. I

Annals. Comeuter Science Series. 3™ Tome 1 Fasc.

The drawing above can be extrapolated by having multiple
MainFrame objects, multiple Document objects and of course, multiple Data
Lists and Grid Views. It should also be specified that there can be only one
Grid View and multiple Data Lists that will be bound successively to the
Grid View object.

The structural OOP design

A grid representation must consist of two parts that interact: the grid header,
that contains the columns of the grid, usually directly related to the fields in
the data list displayed and the grid body, which is the container for this data.

The grid header should contain one or more columns, should control
the resizing and moving of these columns. Each column has a caption that
will be displayed in its client area. Also, a column.should be able to display
icons in its client area whenever the data in_the grid is ordered by this
column.

The grid body displays the data that is bound to it, distributing every
field in a data record to the corresponding place-in the grid. A necessary
feature of the grid body is to handle the selection mechanism, so the user
can interact with one or more data rows at a time using the mouse or the
keyboard. Also, the grid body has the main role in handling scrolling events
if the number of rows and/or columns overrides the client area of the grid
body.

The grid body contains a finite number of rows. At this level the
abstraction of components starts. The grids rows can embrace various
forms. The most obvious would be the abstract model of a row containing
cells, according to the columns in the grid header. Another abstraction of a
grid row will be the grid band, which represents a special grid row and has a
specific role in the grid body.

This abstract model of the grid rows offers multiple possibilities for
deriving different kinds of grid rows, each for different usage, and
integrating them into the grid body.

The class design

The class cGridview is derived from the standard CView MFC class, which
completes the MFC document/view architecture by adding the ability to
visualize the document represented by a CDocument object, the main part of
the document/view architecture.

178

Anale. Seria Informatica. Vol. III fasc. I

Annals. ComEuter Science Series. 3™ Tome 1 Fasc.

This cGridview object is a container for the two components
specified above: the grid header (class cGridHeader) and the grid body.
The header contains the list of columns (class cGridcolumn). The grid body
owns the list of rows (the abstract definition of a row — class cGridRrow), and

each row that can contain cells (cGridcell) must

be an instance of

CGridcellRow. Here is the class diagram that can make things easier to

understand:
CGridView l .
I CGridRow
CGridHeader | Ly |
I * CGridCellRow CGridBand
CGridColumn I*
CGridCell

Figure 2 Grid class diagram

Here is one of the skins of the grid control, and the visual

representation of these classes in the grid client area:

Header COlumn |.~E}- Untitled - test grid

EEX

: - Header
(CGrldCOIan) _E"e ew Hep (CGridHeader)
: [@
Name Date 4 Quantity K

+ Small

Grld Trow sémbata, 21 septembrie 2002 5

/Grld selection

(CGVldROW) DEAX, miercuri, 19 r;ai ZIJ;; 50

v ' ——_1 Gridecell
Grid band < Large '\ (CGridCell
(CGridBand) ~ Grid body

Ready

Figure 3 The visual representation of the grid control

179

Anale. Seria Informatica. Vol. III fasc. I

Annals. ComButer Science Series. 3™ Tome 1 Fasc.

Developing

Drawing
One of the most important aspects in deriving objects with the purpose of

creation of new controls is the painting. In the grid component presented
here, the painting aspect is relevant not only for the visual representation of
the grid, for its design, but also for illustrating some advanced object
oriented programming techniques.

In the Microsoft Visual C++ integrated development environment
(IDE), the painting surface of any visual object is called a Device Context.
This abstract notion is implemented by the MFC class cpc. The CDC class
offers a group of primitive functions that can be used for rendering shapes
on a painting surface.

Normally, any function that is meant to render an object’s client area
has the following form:

void Draw (CDC *pDC) ;

The drawing of the grid control implies the graphical rendering of
each of its components. Thus, each of these components must paint itself
and paint its subcomponents-if any. For example, the cGridview class will
paint the header and the body area. Thus, the Draw method will look like
this:

void CGridView: :Draw (CDC *pDC)
{
// render grid background with <white>
pDC->FillSolidRect (CRect (0, GetHeader () .GetHeight (),
m nWidth,m nHeight),
RGB (255, 255,255)) ;
// render grid body - invoke each row’s Draw() method
for (int k=0; k<Rows.GetCount (); k++)
if (Rows[k]->IsShowing())
Rows [k] ->Draw (pDC) ;
// render the grid header - invoke the header’s Draw()
methd
m_ pHeader->Draw (pDC, nLeftX) ;

}

So the cGridview class is clearing the client area (filling it with
white), then drawing the rows and then rendering the header. Also, the rows
that contain cells will need to paint each of them — invoke each cell’s
Draw () method.

As you can notice in Figure 2, the cGridRow class is the base class for
CGridRowCell and cGridBand. The cGridRow is an abstract class; its

180

Anale. Seria Informatica. Vol. III fasc. I

Annals. Comeuter Science Series. 3™ Tome 1 Fasc.

purpose is to offer a starting point for deriving custom objects that can be
used as rows in the grid. Both cGridcellRow and CGridBand represent
rows in the grid, the difference is the first can contain cells and the latter
cannot, its functionality is totally different. The similarity is that both
classes are abstract representations of rows in the grid.

An abstract class is a class that doesn’t implement all of its methods.
Methods of a class can be left unimplemented by declaring them as pure
virtual functions. Pure virtual functions are functions that have no
implementation in the parent class; their implementation is to be found in
one of the subclasses of this abstract class. Here is how the cGridrow class
is declared:

class CGridRow : public CObject

{
// other implemented methods

virtual void Draw (CDC *pDC) = 0;
virtual BOOL IsShowing() const = 0;

So, the praw () functiomin class cGridRow is declared as a pure virtual
function, that has no implementation (pure virtual functions can be spotted
by the particular * = 0~ after their declaration). Also, the IsShowing ()
constant method (the method.is declared with the const modifier because it
doesn’t modify the contents of the class) is declared as pure virtual; this
function can beused for checking if the row will be showed when the grid
will be rendered (as you can see in the code sequence for the grid body
rendering):

Then, the CGridcellRow class has the following
declaration/implementation:

// in GridCellRow.h
class CGridCellRow : public CGridRow
{

CTypedPtrArray <CPtrArray, CGridCell*> Cells;

virtual void Draw (CDC *pDC) ;
BOOL IsShowing () const;
}

// in GridCellRow.cpp
void CGridCellRow: :Draw (CDC *pDC)
{

181

Anale. Seria Informatica. Vol. III fasc. I

Annals. ComButer Science Series. 3™ Tome 1 Fasc.

// other rendering
for (int k=0; k<Cells.GetCount (); k++)
Cells[k]->Draw (pDC) ;
}

BOOL CGridCellRow::IsShowing() const

{
return TRUE;

}

The cGridBand will also implement both Draw () and TsShowing ()
methods. The praw() from the cGridBand class method will render the
caption of the band and some gradient decoration as an underline or as a
background.

Data

In the beginning of this paper I mentioned that the grid control is data-
aware. This means there is a bilateral connection established between the
rows of the grid and the records in/the dataset. Every row has a unique
correspondent in the dataset, like the following drawing is showing:

Grid control

Dataset Grid band
Data record 1 [« » Gridrow 1
Data record 2 [< » Grid row 2
s P > s

Data record n 1\ Grid band
Grid row n

Figure 4 Dataset and grid control correspondence

The basic classes for the dataset framework are the cpata and the
CbataTtem classes. The cDataItem represents a single record in the dataset,
while the cpata class is the abstraction for the dataset object itself. Both of
these classes are abstract, they need to be subclassed to be instantiated and
182

Anale. Seria Informatica. Vol. III fasc. I

Annals. ComButer Science Series. 3™ Tome 1 Fasc.

used in a project. The cpataTtem declares the pure virtual function
GetOutputvalue () like this:

virtual CString GetOutputValue (UINT nCol) const = 0;

The purpose of this function is to return the string representation of the data
column identified by the ncol parameter, in the implementation of the
subclass. This way, each member field in the dataset that needs to be
represented in the grid will have a string representation. For example, the
integer value 12 will have to be converted into string, thus obtaining the
value “127; a date/time field having a value of 26.04.2005; +16:47:03
could be shown in the grid as “2005, the 26th of April, fat 16:47".

The cpata class is also abstract, by declaring the CreateTtem () pure
virtual function. Here is a piece of the header file of theCbata class:

class CData : public CObject

{
protected:
UINT m nFieldCount;

CTypedPtrList <CPtrList, CDataltem*> Items;

public:
virtual CDataltem* CreatelItem() = 0;

}

The createItem() function should return an instance of a subclass of the
ChataItem class (because the chataItem class cannot be instantiated) like
this:

class CPersonalDataltem : public CDataltem ({
public:

CString m_strName;

BOOL m bMarried;

int m nChildrenCount;

CTime m dBirthday;

// other functions

b

class CPersonalData : public CData {
public:
CPersonalData () : CDhata() {
m nFieldCount = 4;
}

183

Anale. Seria Informatica. Vol. III fasc. I

Annals. ComButer Science Series. 3™ Tome 1 Fasc.

CDhataltem* CreatelItem() {
return new CPersonalDataltem(this);
}
}i

The relation between a grid row and a data record is marked in the
implementation of the application by the insertion of items in the grid. The
grid control defines the InsertRow () member function for inserting data
rows, and also the TnsertBand () function for adding bands:

void InsertRow (CDataltem* pDataltem,
int nBandID = -1, int index = -1);
void InsertBand (UINT ID, LPCSTR pszCaption = "",
COLORREF color = GRIDCTRL COLOR BAND) ;

As you can see, every row inserted will have. its corresponding data
item (this will usually be a subclass of the cpatartem class). Each row can
be defined as belonging to a certain group~in the grid. Groups (class
CGridBand) are identified by ID numbers. This connection between rows
and their associated groups is made (not only) when inserting rows in the
grid, through the nBandID parameter.

The rows of the grid are declared.in the grid as an array of abstract
grid rows that can be data rows or bands, like this:

CTypedPtrArray <CPtrArray, CGridCtrlRow*> Rows;

Reference

[GHIVO0l] Gamma, E.,-Helm, R., Johnson, R., Vlissides, J. Design
Patterns — ‘Elements of Reusable Object-Oriented Software,
Addison Wesley, 2001

[JKOO] Jamsa, K., Klander, L. (2000), Totul despre C si C++
Manualul fundamental de programare in C si C++, Teora, 2000

[Sto00] Stoicu—Tivadar, V. (2000) Programare orientatd pe obiecte,
Orizonturi universitare, 2000

[Wil98] Williams, M. (1998) Bazele Visual C++4, Teora, 1998

184

Anale. Seria Informatica. Vol. III fasc. I

Annals. Comeuter Science Series. 3™ Tome 1 Fasc.

185

