Anale. Seria Informatica. Vol. IV fasc. I -2006
Annals. Computer Science Series. 4™ Tome 1% Fasc. - 2006

Programming with ASLT and Metainformation

Prof. Dr. Karl Hayo Siemsen
FachHochschule De Montfort University,
Oldenburg/Ostfriesland/Wilhelmshaven Software Technology Research LLaboratory
Fachbereich Technik, INK
Constantiaplatz 4 The Gateway
26723 Emden Leicester LE1 9BH, UK

ABSTRACT. The following paper is a short explanation and
overview of the work of the team together with Mr. Wolke, Mr.
Yermashov and Mr. Rasenack presented at the same conference. We
do not prefer source code as the/basic definition of an application.
Instead we use the ASLT as the basic view. For a first understanding,
this is source code parsed into a tree form and stored permanent.
Changes on the application definition during development normally
take place in the ASLT. Two converters, java2aslt and aslt2java
produce the ASLT or the source code. A tree is a much simpler form
to do automatic code insertion into an existing application. There are
further 'views into the application. They can be used as input. They are
synchronized with the ASLT basic view. The tree form can support a
special form ~ of “comments” called metainformation. This
metainformation can be attached to each node forming a node of its
own. So metainformation can be attached to a metainformation node
producing nested metainformation. The concept is supported by tools
to access the ASLT, for example to insert a node, to remove it, to
change its contents, to validate the type or to evaluate the
metainformation and process it, maybe during design time, may be
during runtime. These tools are called metainformation processing
tools (MIPTs).

1. Introduction

Sourcecode has the disadvantage of line numbering. If a line is inserted, all
later line numbering marks are not valid. In the ASLT metainformation is
used instead. Parts of the ASLT defined by metainformation can be brought

229



Anale. Seria Informatica. Vol. IV fasc. I -2006
Annals. Computer Science Series. 4™ Tome 1% Fasc. - 2006

to source code form and vice versa.

Parts of source code at different places but logically coherent can be
temporally sorted together by metainformation to change code (grouping
and folding). The ASLT form in wide parts can be defined language
independent. Metainformation fulfills functional and non functional
requirements.

In figure 1 you see an ASLT in the middle, different views around
the center. The synchronisation in Java is realized by events and listeners,
no polling. Figure 2 shows an ASLT with metainformation attached to some
nodes, and figure 3 shows a typical Java ASLT detail.

UML -

WSS Klassendiagramm Komponenten-
Sequenzdiagramm | Diagramm
Wizards Abstract Syntax Language Tree
(ASLT)
Editor - - Quelltext in
Nassi-Shneiderman Zielsprache

Diagramm

Fig. 1: Synchonisation of the ASLT and other views

To work with an' ASLT, tools are needed to support the tree form.
Different from Java, there is one ASLT file for an application, no split into source
class files. If one variable is declared and that place is searched in the ASLT, all
other uses of that variable are references (links). If the name of the variable has to
be changed, search the place of the variable declaration once and change the
content of that node, that’s all. Other variables with the same name are out of
scope and are not influenced. The UML class diagram is a special fold of the
ASLT: only the classes, the “extends” and “implements” (arrows), methods,
“dependencies” (arrows) and variables are unfolded. With a tool they can be
shown in the usual visual presentation. Different parts of the ASLT can be
unfolded by metainformation, all other parts remain folded. This form can be
temporarily brought back to a view of the source code where pieces of the code
are put together which are many lines away from each other in the normal view
of the source code, may be in different files. The named unfolds are stored in a
database. You can switch between different unfolds, the folding or grouping or
slicing information is metainformation and not lost when switched to a different
unfold. Figure 4 shows a grouping.

230



Anale. Seria Informatica. Vol. IV fasc. I - 2006

Annals. Computer Science Series. 4" Tome 1* Fasc. - 2006

Meta

Source
CodeFile,

Meta
Info 3

Meta
Info 5

Fig. 2: Schematic view of an ASLT

L wasSLTJdavaProjects
= ] <ASLTdavaSouwrceCodeFileS et
=) <ASLTJavaSourceCodeFiles
- ------ W <OH5SLTldavaPackage:> imwPackage. treeExample
) ASLTJdavalmport
=[] <ASLTJdavaFPackageSets
-y <ASLTJdavaFPackage: jawax swing
- A5 TldavaPackage: (jawva.util
=) <ASLTJdavaClassSets
=) <ASLTdavaClass: :
- <ASL Tdavaldentifiers Hello
- <OASLTdavak odifiers> @ public
;' <A5LTdavaClasz=Bodys>
- ;| <A SLTdawvawariableD eclarations et
: ) <&SLTJdavavw ariableD eclarations>
- <ASSLTJavakd odifier: : protechked
L) <aSLTJdavalibTvpe:
ER - <A5LTJdavaldentifier:> [jawva.lang. String
;I <ASLTJavaw ariableD eclarators et
= ;I <aSLTJdavavariableDeclarator=
= ) <aSLTJdavavariableDeclaratorl d>
R o <ASLT)avaldentifiers (str

Flg 3 Detazl of an ASLT (part of Hello World)

The ASLT is handled by tools. For example a metainformation can
specify a template, for example “search”. The template is taken from a
library, inserted by a MIP tool and replaces the metainformation of the
ASLT (but the metainformation is still held in the ASLT to be able to take a
different search algorithm). This replacement allows source code
substitution by metainformation. At any time the replacement can be folded
to its metainformation placeholder.

231



Anale. Seria Informatica. Vol. IV fasc. I - 2006

Annals. Computer Science Series. 4" Tome 1* Fasc. - 2006

} Node 1 >
Node 2
;Node 6 >

< Node 7 >
{ Node 5 Group N\ Node 8 > Node 11>
< — definition L

Fig. 4: Grouping beforef07dmg and unfolding the group in an ASLT

An ASLT can be made relatively independent from any special
programming language. As shown with the template example, the language
of the source code of a language can be extended by templates. For
example, Java can be extended by occam PAR or a pipeline or a farm,
templates not included in the Java language itself. This is the foundation of
programming language conversion, for example from assembler to Java or
from C to Java and vice versa. In general a third independent ASLT is
needed as an internal step for language conversion.

Because the ASLT is language independent, most of the tools
working with ASLTs have the same property of language independence. If
they are built, they can be used in a different project in a different language.

The ASLT,; metainformation and the tools described until here
support the full language in use; there is no loss in generality.

2. Failover as a non functional requirement of an application

If there is a tested application you can add non functional requirements by
metainformation. This is valid for other non functional requirements too, for
example monitoring during runtime to an administration server. You should
be able to add it as easy as possible. One of the examples is failover. First
you insert metainformation half automatically by a tool, for example virtual

232



Anale. Seria Informatica. Vol. IV fasc. I -2006
Annals. Computer Science Series. 4™ Tome 1% Fasc. - 2006

breakpoints. Call them failover points. You can do that for example after
each user input of the application. Then every user input is stored in a
database at its failover point. If the application crashes, the failover points
with the user inputs can be called, especially the last executed failover point.
At this point (somewhere in the middle of the code) the application can be
restarted. This is nearly invisible to the user. All his information — for
example in a basket - is valid and taken from a database, no new input from
the user is needed even if the connection or the server or the application had
crashed. This basic concept can be extended if the failover points are not
only located after user inputs but after longer calculations as well or if the
data structures to be stored are more then strings from the user but objects.
At the failover points, which means after some metainformation, the non-
functional code is inserted automatically by a MIP tool. Only the placement
of the failover points is done by the developer. Because the metainformation
is not necessarily transferred to the source code, the previous original source
code can be reproduced at any time if needed to modify that code. The
modification can be brought back to the ASLT without disturbing the
failover metainformation inserted earlier. Until this-€xplanation there is no
restriction in generality as there is with the following example.

3. Visual domain specific programming, an example

There is the typical situation: you have non-programmers as users and they
have to program a specific task they want to use.

The contradiction can be solved: let the users program visually with
a set of icons along a toolbar and by using drag and drop into a pane. They
drag the icon, drop it on the pane and — maybe - have to connect that icon
with a former one, for example for communication. The icons are
programmed by experts, the user only uses them in an intuitive way. The
programming (generating the source code of the application and compiling
it to a running application) is hidden to the user.

We call this view of programming the Neurath view. Otto Neurath
was the inventor of icons called Isotypes. Again the way of programming is
done via ASLT and metainformation. Domain specific means: we
concentrate on the pre-produced icons of the toolbar and insofar we are
restricted to those “programming” elements, to that domain.

233



Anale. Seria Informatica. Vol. IV fasc. I -2006
Annals. Computer Science Series. 4™ Tome 1% Fasc. - 2006

Earlier there was a hint to Occam constructs within the Java

language. If in the toolbar there are all 35 or so Java language elements
extended by the Occam constructs, this is not really “domain specific”. All
what can be done by a general language like Java and some extras can be
done. Basically this is a Nassi-Shneiderman form of Java with some Occam
extensions. What we have in mind with priority are domain specific
examples where no knowledge of programming is needed and drag and drop
of the icons of the toolbar is what has to be done during visual
programming.
The example we want to discuss is a specific domain with inputs. (sensors),
controls (macros) and outputs (actors), the connections between. these
elements in a relation layer as a blueprint of an application and finally the
instantiation to a task. During discussion during the conference.we found
other interesting examples, a Petri Net composed bya non-programmer or a
supply chain (A. Roth, A. Fortis).

The elements input (sensors), controller (macros) and output (actors)
are within a toolbar ready for drag and drop. They are put on the pane.
Grouping and folding of some basic macro elements or of some sensors or
actors should be possible at the pane at any time. These folded elements
(elements with combined characteristics) can be brought back to the toolbar
and reused. With the last step the instantiation the reusable elements are
fixed to one single application. Earlier, for the view we used as a graphic
tool the package Jung, but we are just changing to the open source graphics
tool Jgraph able to group, to fold and to support different layout managers.
Please notice: the graphics view 1is separated from model and controller by
the MV C design pattern. So the view is exchangeable.

The elements of the toolbar can be combined by the user to a
running task. To produce the relation layer definitions there are docking
places in the ASLT part trees. The relation layer combines the elements not
only locally but - if needed - remote. A second layer can insert security keys
to the transmission line if the information is transmitted over the internet.
Connections not valid are checked during iconic design and rejected. Again
the toolbar elements are pre-programmed and in ASLT form. There are
docking places to combine them.

The application is done by drag and drop of ASLT part trees, the
instantiation and compilation are not visible to the user.

The icons themselves can be extended to contain some extra
information. For example a sensor can contain a thermometer scale and
some values. The sequence of the following figures 5 to 8 will show you the
editors with their panes for building sensors, macros and instantiated tasks.

234



Anale. Seria Informatica. Vol. IV fasc. I - 2006

Annals. Computer Science Series. 4™ Tome 1% Fasc. - 2006

File Model Elements Help

Event ) | 2
(| cousis ‘ | | nuaraiss & =l =l
Sensor Pattern

Fig. 5: The sensor editor creating an extra sensor pattern (start)

File Model Elements Help

=
il
|
=
8

1

Y

@

Fig. 6: The sensor editor creating an extra sensor pattern (design)

235



Anale. Seria Informatica. Vol. IV fasc. I - 2006

Annals. Computer Science Series. 4" Tome 1* Fasc. - 2006

< Modeling Macros Toolkit

=

Macro Modeling View |

£ Properties Dialog for Relations

Please fill out Property for Actor Macro Relation

r‘remparatura\/a\ue | |>= "I |5 |

4| | 1l I3

Fig. 7: The Macro editor, relation layer and values supported by a wizard

£ TaskEditor

TaskEditor

macroEventProducerMame_1

|

sensor_1

4] | Ii [»

Fig. 8: The task editor producing an application including instantiation

The basic elements build are brought to the toolbar of the next editor
for further use.

236



