

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 215

OOnn SSoommee MMaanniippuullaattiioonnss

wwiitthh FFuuzzzzyy PPrroocceesssseess

LLuucciiaann LLuuccaa,, LLuucciiaann LL.. LLuuccaa,,

„„TTiibbiissccuuss”” UUnniivveerrssiittyy,, TTiimmiişşooaarraa,, RRoommaanniiaa

ABSTRACT. The paper starts from the observation on the

complexity of the manipulation of fuzzy processes that increases very

rapidly with the extents of the processes representation. Therefore, a

productive approach is to divide the problem into smaller parts,

treated separately and then the results combined. Some algebraic

results obtained by the authors are presented.

KEYWORDS: fuzzy process, refination, robustness, robust process,

chaotic process

IInnttrroodduuccttiioonn

We remind the notion of fuzzy process that we introduced in [LD01], a

formalism for the notion of fuzzy contract between a device and its

environment. Such a contract specifies the device-environment interface in

terms of executions, which can be sequences of events, time functions, etc;

yet we will consider them justly as elements of an arbitrary set E.

Let E be the set of all executions and]1,0[: →∆ E and

]1,0[: →Γ E be two fuzzy subsets of E. In what follows, we note with:

}0)(|{ >∆∈= xExX , },0)(|{ >Γ∈= xExY }0)()(|{ =Γ=∆∈= xxExB

and we respectively call:

• X – the set of accessible executions;

• Y – the set of acceptable executions;

• B – the set of rejections.

Additionally, we note ,/ XX ∆=∆ YY /Γ=Γ

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 216

Definition 1: The pair),(YXp Γ∆= , where X∆ and YΓ are defined as

above, is called a (vague) fuzzy process over E.

 The set of all fuzzy processes over a pair of crisp subsets X and Y of

E, as above, is called the space of the fuzzy process of (X, Y), and the set of

all fuzzy process over E is called the space of the fuzzy process of E. ■

In [Luc03] we studied in detail the refination (�), we defined and

studied the operations with fuzzy processes: the sum (⊕), the product (⊗),

the intersection (�), the reunion (�), and the reflection (-).

As we could notice, the complexity of manipulation of fuzzy

processes increases very rapidly with the representation of their extent.

Therefore, a productive approach consists in dividing the problem into

smaller parts, treated separately and then combining the results.

11 AA nneeww ddeeffiinniittiioonn ooff rreeffiinnaattiioonn

We start by presenting some algebraic results we have obtained:

Proposition 1: Let us have three fuzzy processes p, q and r over the E set of

executions, then

p � q ⇒ p ⊗ r � q ⊗ r

Demonstration.

p � q �

Γ≤Γ

∆≥∆

)()(

)()(

xx

xx

qp

qp

 ⇒

⊆

⊇

qp

qp

YY

XX

 ⇓

 p ⊗ r � q ⊗ r �

Γ≤Γ

∆≥∆

⊗⊗

⊗⊗

)()(

)()(

xx

xx

rqrp

rqrp

 ⇒

⊆

⊇

⊗⊗

⊗⊗

rqrp

rqrp

YY

XX

Yet,

)}(),({min)(xxx
rp

XXx

rp

X
rp

rp
∆∆=∆

∩∈

⊗

⊗

)}(),({min)(xxx
rq

XXx

rq

X
rq

rq
∆∆=∆

∩∈

⊗

⊗

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 217

⊇

∩=

∩=

⊗

⊗

qp

rqrq

rprp

XX

XXX

XXX

 ⇒ rqrp XX ⊗⊗ ⊇

)
~~

()
~~

()(rprprprp XYYXYYY ∩∪∩∪∩=⊗

)
~~

()
~~

()(rqrqrqrq XYYXYYY ∩∪∩∪∩=⊗

rprqpq

rqrpqp

rprpqp

XYXYYY

YXYXXX

YYYYYY

~~~~~~

~~~~~~

∩⊆∩⇒⊆

∩⊆∩⇒⊆

∩⊆∩⇒⊆

that is rqrp YY ⊗⊗ ⊆ ■

Corollary 1: Let the fuzzy processes p and q be over the E set of executions,

then p � q ⇒ p � p ⊗ q

Demonstration: Considering from the proposition 1 we obtain:

p � q ⇒ p = pp ⊗ � q ⊗ p = p ⊗ q ■

Corollary 2: Let the fuzzy processes p1, p2, q1, q2 and q be over the E set of

executions:

i) p1 � q1 ∧ p2 � q2 ⇒ p1 ⊗ p2 � q1 ⊗ q2

 ii) p1 � q ∧ p2 � q ⇒ p1 ⊗ p2 � q

Demonstration. i) From proposition 1 we obtain that:

 p1 � q1 ⇒ p1 ⊗ p2 � q1 ⊗ p2

p2 � q2 ⇒ p2 ⊗ q1 � q2 ⊗ q1 ⇒

 q1 ⊗ p2 � q1 ⊗ q2 (from the commutativity of ⊗)

From the transitivity of the refination relation:

p1 ⊗ p2 � q1 ⊗ p2 � q1 ⊗ q2

ii) immediately results from the idempondency of ⊗, by the substitution of

q1, respectively q2 with q and applying the relation i):

p1 � q ∧ p2 � q ⇒ p1 ⊗ p2 � q ⊗ q = q ■

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 218

Proposition 1, together with the transitivity of the refination and the

commutativity of the product, enables the modular and hierarchical

verification. The problem is to determine if p � q, where p is a specification

and q an implementation. The idea is to determine a chain of intermediate

specifications t0, t1,...,tn so that t0=p şi tn=q.

The intermediate specifications (including p and q) may be broken

into components:

ti = a1 ⊗ a2 ⊗ …

ti+1 = (b11 ⊗ b12 ⊗ ...) ⊗ (b21 ⊗ b22 ⊗ ...) ⊗ ...

 Then, we verify for each j, that:

aj � bj1 ⊗ bj2 ⊗ ...

From the monotony of the product ⊗ comparing with �, it follows:

ti � ti+1 , }1,...,1,0{ −∈ ni

and from the transitivity we establish that for p � q.

If we also consider the property of idempotency the consecutive

specifications can be partially covered: the refination between p and q can

be checked by breaking p in more parts:

p = p1 ⊗ p2 ⊗ …

and, then, by comparing each part with q. The parts of p can be considered

the properties that must be individually verified. If for each index i, pi � q,

then p � q.

It is obvious that the technique of modular and hierarchical

verification, with a finite number of levels of specifications and with a finite

number of components at each level is justified by corollary 2.

An alternative definition of the refination is to say that an

"implementation" q relatively is correct to a "specification" p, if q operates

properly in the environment of p. The question is whether this alternative

definition is equivalent to the definition 8 (definition 8) of paper [LL09].

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 219

The following proposition answers positively to this question and therefore

it connects the notions of absolute and relative correctness (see [LL09]).

Theorem 1. Let us have two fuzzy processes p and q over the set of

executions E,

p � q � - p � q ∈ RE

Demonstration. Let us have),(
p

Y

p

X pp
p Γ∆= and),(

q

Y

q

X qq
q Γ∆= (see

figure1)

-p ⊗ q ∈ RE � ⇔=Γ
⊗

E
qp 1

EXYYXYY qpqpqp =∩∪∩∪∩ −−−)
~~

()
~~

()(

EXXYYYX qpqpqp =∩∪∩∪∩)
~~

()
~~

()(

Figure 1. ■

The above theorem allows us to verify whether an implementation

satisfies the specification, by placing the implementation in the environment

of the specification and then verifying the condition of the absolute

correctness of their product. Our result is identical to that obtained in the

classical approaches (i.e, [Ver94]).

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 220

We can give an alternative definition for refination in terms of

testing: q is "better than or as good" as p if q passes all the tests that p can

pass. Passing a test r can be seen as an absence of rejections when the

device is connected to r.

The following theorem shows that this definition of refination is

equivalent to the definition 8 from [LD01], and therefore it provides a new

connection between the notions of absolute and relative correctness from the

space of the fuzzy process.

Theorem 2: Let us have two fuzzy processes p and q over the set of

executions E,

p � q � ∀r � (r ⊗ p ∈ RE ⇒ r ⊗ q ∈ RE)

Demonstration. From theorem 1 and proposition 1 we have that:

r ⊗ p ∈ RE ⇒ - r � p

r ⊗ q ∈ RE ⇒ - r � q

So, it is sufficient to show that:

 p � q � ∀r � (- r � p ⇒ - r � q)

The first implication follows from the transitivity of the refineries:

p � q ∧ - r � p ⇒ - r � q

Reciprocally, let us have r = -p, then -r = p and from the reflexivity of the

refination ⇒ - r � q. From the hypothesis -r � q and because -r = p, it

follows that p � q ■

22 RRoobbuusstt pprroocceesssseess

In concurrency theory it is often used "the testing paradigm", which we

formulate in terms of fuzzy processes: being given a process p, which

represents a known specification and a process q, which is part of a known

implementation, and a process r, which represents the unknown part of the

implementation, then

p � q ⊗ r

often called "the design inequality".

The following theorem solves this design inequality, characterizing

its solutions as those fuzzy processes that refine a minimal solution.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 221

Theorem 3: Let us have the fuzzy processes p, q and r over the same set of

executions E,

p � q ⊗ r � p ⊕ - q � r

Demonstration. p � q ⊗ r � - p ⊗ (q ⊗ r) ∈ RE �

-p ⊗ q ⊗ r ∈ RE � -p ⊗(- -q) ⊗ r ∈ RE �

- (p ⊕ -q) ⊗ r ∈ RE � p ⊕ -q � r ■

A classic design inequality is the software designing for embedded

systems. In this sense, p is the specification known as embedded system, q

is the known description of the underlying machine, and r is the unknown

specification for software.

Often in the designing of systems it is expected that the subsystems

(parts) are very easy to handle and have a defined behavior in any

environment. Such features are modeled in the space of fuzzy processes

using the properties of robustness: the device specified by a fuzzy process

accepts any execution, regardless the way in which the environment behaves

towards the execution. Consequently, the environments (users) should be

assumed to be completely unpredictable in the sense that they do not offer

any guarantee in terms of avoided executions.

These observations support the following theorem, which shows

how a fuzzy process can be "split" in two parts, a robust and a chaotic one.

Theorem 4: Let it be a fuzzy process p over the set of executions E:

i) p � Ω ∈ RE

ii) p � Ω ∈ HE

iii) p = (p � Ω) ⊗ (p � Ω)

Demonstration.

 i) ∆
p�Ω

(x))()}(1),({min xxx
p

XE
p

X
EXx pp

p

∆=∆=
∩∈

Γ
p�Ω

(x) EE
p

Y
EYx

xx
p

p

1)}(1),({max =Γ=
∩∈

then p � Ω ∈ RE

ii) ∆
p�Ω

(x))(1)}(1),({max xxx EE
p

X
EXx p

p

=∆=
∩∈

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 222

Γ
p�Ω

(x)
p

YE
p

Y
EYx pp

p

xx Γ=Γ=
∩∈

)}(1),({min

then p � Ω ∈ HE

iii) q = (p � Ω) ⊗ (p �Ω) = pp

Y

p

X

p

YEE

p

X pppp
=Γ∆=Γ⊗∆),(),1()1,(,

 because pp YX ⊆
~

 ■

The robust fuzzy processes can be viewed as pure guarantees and the

chaotic fuzzy processes can be seen as pure requirements. Theorem 4 shows

exactly the fact that any fuzzy process is the product resulted from a pure warranty

and a pure requirement. Moreover, it gives a method to calculate the factors.

The next proposition shows that the product of two robust devices or

of two robust environments is also robust, namely the fact that if all

components of the system are robust, then the system is robust. Moreover, it

indicates even other properties of closure for many fuzzy robust processes,

in the finite case (comparing to the operations defined in [LL09]).

Proposition 2: RE set is closed to ⊗, ⊕, � and �.

Demonstration. Let p and q be two fuzzy robust processes. Then the

proposition is immediate if we calculate the sets of acceptable executions

for

p ⊗ q, p ⊕ q, p � q, p � q

For example:

EXYYXYYY qpqpqpqp =∩∪∩∪∩=⊗)
~~

()
~~

()(■

Using the properties of distributivity, commutativity, idempotency,

etc. of the reunion and classic intersection, we obtain the following

property:

Proposition 3: Let us have three fuzzy processes p, q and r over the set of

executions E,

i) p � q � p � q = q � p � q = p

ii) p � (q � r) = (p � q) � (p � r)

iii) p � (q � r) = (p � q) � (p � r) ■

Moreover, we notice that Ω � -Ω = Ω .

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 223

RReeffeerreenncceess

[LD01] L. Luca, I. Despi - Toward a Definition of Fuzzy Processes,

Proceedings of the 5th International Symposium on Economics

Informatics, Bucharest, pp. 855-859, May 2001.

[LL09] L. Luca, L. L. Luca – About Operations of Fuzzy Processes,

Proceedings of the 5th International Symposium, Timişoara,

May 2009.

[Luc03] Luca, L. – Spaţii de procese fuzzy, Editura Mirton, Timişoara,

2003

[Neg95] R. Negulescu - Process spaces, Technical Report CS-95-48,

Department of Computer Science, University of Waterloo,

Ontario, Canada, December, 1995.

[Neg98] R. Negulescu - Process Spaces and Formal Verification of

Asynchronous Circuits, PhD thesis, Department of Computer

Science, University of Waterloo, Ontario, Canada, August,

1998.

[Ver94] T. Verhoeff - The testing paradigm applied to network structure,

Computing Science Notes 94/10, Department of Mathematics

and Computer Science, Eindhoven University of Technology,

The Nederlands, 1994.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 224

