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ABSTRACT. The paper starts from the observation on the 

complexity of the manipulation of fuzzy processes that increases very 

rapidly with the extents of the processes representation. Therefore, a 

productive approach is to divide the problem into smaller parts, 

treated separately and then the results combined. Some algebraic 

results obtained by the authors are presented. 

KEYWORDS: fuzzy process, refination, robustness, robust process, 

chaotic process 

    

 

IInnttrroodduuccttiioonn    
 

We remind the notion of fuzzy process that we introduced in [LD01], a 

formalism for the notion of fuzzy contract between a device and its 

environment. Such a contract specifies the device-environment interface in 

terms of executions, which can be sequences of events, time functions, etc; 

yet we will consider them justly as elements of an arbitrary set E.  

Let E be the set of all executions and ]1,0[: →∆ E  and 

]1,0[: →Γ E  be two fuzzy subsets of E. In what follows, we note with: 

}0)(|{ >∆∈= xExX , },0)(|{ >Γ∈= xExY  }0)()(|{ =Γ=∆∈= xxExB  

and we respectively call:  

• X – the set of accessible executions; 

• Y – the set of acceptable executions; 

• B – the set of  rejections. 

Additionally, we note  ,/ XX ∆=∆  YY /Γ=Γ  
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Definition 1:  The pair ),( YXp Γ∆= , where X∆ and YΓ  are defined as 

above, is called a (vague) fuzzy process over E.  

 The set of all fuzzy processes over a pair of crisp subsets X and Y of 

E, as above, is called the space of the fuzzy process of (X, Y), and the set of  

all fuzzy process over E  is called the space of the fuzzy process of E. ■ 

 

In [Luc03] we studied in detail the refination (�), we defined and 

studied the operations with fuzzy processes: the sum (⊕), the product (⊗), 

the intersection (�), the reunion (�), and the reflection (-). 

As we could notice, the complexity of manipulation of fuzzy 

processes increases very rapidly with the representation of their extent. 

Therefore, a productive approach consists in dividing the problem into 

smaller parts, treated separately and then combining the results. 

 

 

11  AA  nneeww  ddeeffiinniittiioonn  ooff  rreeffiinnaattiioonn  

 

We start by presenting some algebraic results we have obtained: 

 

Proposition 1: Let us have three fuzzy processes p, q and r over the E set of 

executions, then 

p � q   ⇒   p ⊗ r � q ⊗ r  

 

Demonstration. 

p � q     �      






Γ≤Γ

∆≥∆

)()(

)()(

xx

xx

qp

qp

   ⇒  






⊆

⊇

qp

qp

YY

XX
 

     ⇓ 

       p ⊗ r � q ⊗ r  �  






Γ≤Γ

∆≥∆

⊗⊗

⊗⊗

)()(

)()(

xx

xx

rqrp

rqrp

   ⇒  






⊆

⊇

⊗⊗

⊗⊗

rqrp

rqrp

YY

XX
 

Yet,  

   )}(),({min)( xxx
rp

XXx

rp

X
rp

rp
∆∆=∆

∩∈

⊗

⊗
 

      )}(),({min)( xxx
rq

XXx

rq

X
rq

rq
∆∆=∆

∩∈

⊗

⊗
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⊇

∩=

∩=

⊗

⊗

qp

rqrq

rprp

XX

XXX

XXX

    ⇒   rqrp XX ⊗⊗ ⊇  

   )
~~

()
~~

()( rprprprp XYYXYYY ∩∪∩∪∩=⊗                   

              )
~~

()
~~

()( rqrqrqrq XYYXYYY ∩∪∩∪∩=⊗  

              

rprqpq

rqrpqp

rprpqp

XYXYYY

YXYXXX

YYYYYY

~~~~~~

~~~~~~

∩⊆∩⇒⊆

∩⊆∩⇒⊆

∩⊆∩⇒⊆

   

that is rqrp YY ⊗⊗ ⊆                      ■ 

 

Corollary 1: Let the fuzzy processes p and q be over the E set of executions, 

then       p � q    ⇒    p � p ⊗ q 

 
Demonstration: Considering from the proposition 1 we obtain: 

p � q    ⇒   p = pp ⊗ � q ⊗ p =  p ⊗ q     ■ 

 

Corollary 2: Let the fuzzy processes p1, p2, q1, q2 and q be over the E set of 

executions: 

i)      p1  �  q1   ∧  p2  �  q2    ⇒  p1  ⊗ p2    �  q1 ⊗ q2     

 ii)     p1  �  q     ∧  p2  �  q     ⇒  p1  ⊗ p2    �  q     

 
Demonstration. i) From proposition 1 we obtain that: 

 p1  �  q1    ⇒  p1  ⊗ p2    �  q1 ⊗ p2 

p2  �  q2    ⇒  p2  ⊗ q1    �  q2 ⊗ q1     ⇒ 

  q1  ⊗ p2    �  q1 ⊗ q2         (from the commutativity of ⊗)  

From the transitivity of the refination relation: 

p1  ⊗  p2  �   q1  ⊗ p2    �  q1 ⊗ q2 

ii)  immediately results from the idempondency of  ⊗, by the substitution of 

q1, respectively q2 with q and applying the relation i): 

p1  �  q   ∧  p2  �  q     ⇒  p1  ⊗ p2   �  q  ⊗ q    =  q    ■ 
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Proposition 1, together with the transitivity of the refination and the 

commutativity of the product, enables the modular and hierarchical 

verification. The problem is to determine if p � q, where p is a specification 

and q an implementation. The idea is to determine a chain of intermediate 

specifications t0, t1,...,tn  so that   t0=p  şi  tn=q.  

The intermediate specifications (including p and q) may be broken 

into components: 

 

ti = a1 ⊗  a2  ⊗ … 

ti+1 = (b11 ⊗ b12 ⊗  ...) ⊗ (b21 ⊗  b22 ⊗   ...) ⊗ ... 

  

 Then, we verify for each j, that:  

 

aj � bj1 ⊗  bj2 ⊗   ... 

  

From the monotony of the product ⊗ comparing with �, it follows:  

 

ti  �  ti+1 ,   }1,...,1,0{ −∈ ni  

 

and from the transitivity we establish that for p � q. 

If we also consider the property of idempotency the consecutive 

specifications can be partially covered: the refination between p and q can 

be checked by breaking p in more parts: 

 

p = p1 ⊗  p2  ⊗ … 

 

and, then, by comparing each part with q. The parts of p can be considered 

the properties that must be individually verified.  If for each index i,  pi � q, 

then   p � q. 

It is obvious that the technique of modular and hierarchical 

verification, with a finite number of levels of specifications and with a finite 

number of components at each level is justified by corollary 2.  

An alternative definition of the refination is to say that an 

"implementation" q relatively is correct to a "specification" p, if q operates 

properly in the environment of p. The question is whether this alternative 

definition is equivalent to the definition 8 (definition 8) of paper [LL09]. 
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The following proposition answers positively to this question and therefore 

it connects the notions of absolute and relative correctness (see [LL09]). 

 

Theorem 1. Let us have two fuzzy processes p and q over the set of 

executions E, 

p � q    �   - p � q  ∈  RE 

 

Demonstration. Let us have ),(
p

Y

p

X pp
p Γ∆= and ),(

q

Y

q

X qq
q Γ∆=   (see 

figure1) 

-p ⊗ q  ∈  RE  � ⇔=Γ
⊗

E
qp 1  

EXYYXYY qpqpqp =∩∪∩∪∩ −−− )
~~

()
~~

()(  

EXXYYYX qpqpqp =∩∪∩∪∩ )
~~

()
~~

()(  

 

 
 

Figure 1.                                         ■ 

 

The above theorem allows us to verify whether an implementation 

satisfies the specification, by placing the implementation in the environment 

of the specification and then verifying the condition of the absolute 

correctness of their product. Our result is identical to that obtained in the 

classical approaches (i.e, [Ver94]).  
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We can give an alternative definition for refination in terms of 

testing: q is "better than or as good" as p if q passes all the tests that p can 

pass. Passing a test r can be seen as an absence of rejections when the 

device is connected to r. 

The following theorem shows that this definition of refination is 

equivalent to the definition 8 from [LD01], and therefore it provides a new 

connection between the notions of absolute and relative correctness from the 

space of the fuzzy process.  

 

Theorem 2: Let us have two fuzzy processes p and q over the set of 

executions E,  

p � q    �   ∀r � ( r ⊗ p ∈ RE   ⇒    r ⊗ q  ∈  RE ) 

 
Demonstration. From theorem 1 and proposition 1 we have that:  

r ⊗ p  ∈  RE   ⇒  - r � p 

r ⊗ q  ∈ RE   ⇒  - r � q 

So, it is sufficient to show that:  

  p � q   �  ∀r � ( - r � p   ⇒  - r � q ) 

The first implication follows from the transitivity of the refineries: 

p � q   ∧  - r  �  p   ⇒   - r  �  q 

Reciprocally, let us have r = -p, then -r = p and from the reflexivity of the 

refination ⇒ - r � q.  From the hypothesis -r � q   and because -r = p, it 

follows that p  �  q ■  

 

 

22  RRoobbuusstt  pprroocceesssseess    

 

In concurrency theory it is often used "the testing paradigm", which we 

formulate in terms of fuzzy processes: being given a process p, which 

represents a known specification and a process q, which is part of a known 

implementation, and a process r, which represents the unknown part of the 

implementation, then 

p  �  q ⊗ r 

 

often called "the design inequality".  

The following theorem solves this design inequality, characterizing 

its solutions as those fuzzy processes that refine a minimal solution. 
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Theorem 3: Let us have the fuzzy processes p, q and r over the same set of 

executions E,  

p � q ⊗ r  �   p ⊕ - q  � r 

 

Demonstration.        p � q ⊗ r  �   - p ⊗ (q ⊗ r) ∈ RE  � 

-p ⊗ q ⊗ r ∈ RE  � -p ⊗(- -q) ⊗ r ∈ RE  � 

- ( p ⊕ -q) ⊗ r ∈ RE  � p ⊕ -q � r   ■ 

 

A classic design inequality is the software designing for embedded 

systems. In this sense, p is the specification known as embedded system, q 

is the known description of the underlying machine, and r is the unknown 

specification for software. 

Often in the designing of systems it is expected that the subsystems 

(parts) are very easy to handle and have a defined behavior in any 

environment. Such features are modeled in the space of fuzzy processes 

using the properties of robustness: the device specified by a fuzzy process 

accepts any execution, regardless the way in which the environment behaves 

towards the execution. Consequently, the environments (users) should be 

assumed to be completely unpredictable in the sense that they do not offer 

any guarantee in terms of avoided executions. 

These observations support the following theorem, which shows 

how a fuzzy process can be "split" in two parts, a robust and a chaotic one.  

 

Theorem 4: Let it be a fuzzy process p over the set of executions E: 

i)    p � Ω ∈  RE   

ii)   p � Ω ∈  HE 

iii)  p = (p � Ω) ⊗ (p � Ω)  

 

Demonstration.   

 i)  ∆ 
p�Ω

(x) )()}(1),({min xxx
p

XE
p

X
EXx pp

p

∆=∆=
∩∈

 

Γ 
p�Ω

(x) EE
p

Y
EYx

xx
p

p

1)}(1),({max =Γ=
∩∈

       

then   p � Ω ∈  RE   

ii)  ∆ 
p�Ω

(x) )(1)}(1),({max xxx EE
p

X
EXx p

p

=∆=
∩∈
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Γ 
p�Ω

(x) 
p

YE
p

Y
EYx pp

p

xx Γ=Γ=
∩∈

)}(1),({min        

then   p � Ω ∈  HE   

iii)    q = (p � Ω) ⊗ (p �Ω) = pp

Y

p

X

p

YEE

p

X pppp
=Γ∆=Γ⊗∆ ),(),1()1,( ,  

 because  pp YX ⊆
~

     ■ 

 

The robust fuzzy processes can be viewed as pure guarantees and the 

chaotic fuzzy processes can be seen as pure requirements. Theorem 4 shows 

exactly the fact that any fuzzy process is the product resulted from a pure warranty 

and a pure requirement. Moreover, it gives a method to calculate the factors.  

The next proposition shows that the product of two robust devices or 

of two robust environments is also robust, namely the fact that if all 

components of the system are robust, then the system is robust. Moreover, it 

indicates even other properties of closure for many fuzzy robust processes, 

in the finite case (comparing to the operations defined in [LL09]). 

 

Proposition 2:   RE  set is closed to ⊗, ⊕, � and �. 

 
Demonstration. Let p and q be two fuzzy robust processes. Then the 

proposition is immediate if we calculate the sets of acceptable executions 

for  

p ⊗ q,  p ⊕ q,  p � q,  p � q 

For example: 

EXYYXYYY qpqpqpqp =∩∪∩∪∩=⊗ )
~~

()
~~

()(      ■ 

 

Using the properties of distributivity, commutativity, idempotency, 

etc. of the reunion and classic intersection, we obtain the following 

property: 

 

Proposition 3:   Let us have three fuzzy processes p, q and r over the set of 

executions E,  

i)        p � q  �  p � q = q  �   p � q = p 

ii) p � ( q � r )  =  ( p � q ) � ( p � r ) 

iii) p � ( q � r )  =  ( p � q ) � ( p � r )     ■ 

 

Moreover, we notice that  Ω  � -Ω = Ω . 
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