

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 285

AAnnaallyysseerr FFrraammeewwoorrkk ttoo VVeerriiffyy

SSooffttwwaarree CCoommppoonneennttss

Rolf Andreas Rasenack
FH Oldenburg/Ostfriesland/Wilhelmshaven De Montfort University,

Fachbereich Technik, INK Software Technology Research Laboratory

Constantiaplatz 4 The Gateway

26723 Emden Leicester LE1 9BH, UK

rasenack@technik-emden.de

Abstract: Today, it is important for software companies to build

software systems in a short time-interval, to reduce costs and to have a

good market position. Therefore well organized and systematic

development approaches are required. Reusing software components,

which are well tested, can be a good solution to develop software

applications in effective manner. The reuse of software components is

less expensive and less time consuming than a development from

scratch. But it is dangerous to think that software components can be

match together without any problems. Software components itself are

well tested, of course, but even if they composed together problems

occur. Most problems are based on interaction respectively

communication. Avoiding such errors a framework has to be

developed for analysing software components. That framework

determines the compatibility of corresponding software components.

The promising approach discussed here, presents a novel technique for

analysing software components by applying an Abstract Syntax

Language Tree (ASLT). A supportive environment will be designed

that checks the compatibility of black-box software components.

This article is concerned to the question how can be coupled software

components verified by using an analyzer framework and determines

the usage of the ASLT. Black-box Software Components and Abstract

Syntax Language Tree are the basis for developing the proposed

framework and are discussed here to provide the background

knowledge. The practical implementation of this framework is

discussed and shows the result by using a test environment.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 286

1 Introduction and Motivation

Component-based software technology represents a software production

paradigm that concentrates on the reuse of software components to develop

large software systems. The reuse of software components, even so called

components-of-the-shelf (COTS), to assemble applications are in practice

often problematic. It was hoped that software components can be match

together without any change [SH04]. But often in practice the behaviour of

a software component is not the same as expected. Due to incompatible

interfaces for communication/ interaction between software components and

the lack of functionality this problem occurs.

The circumstances that software components cannot be reused ‘‘as-is”

is identified by many researchers. Therefore software components have to

be analysed whether they can be match, be adapted or short it is necessary to

verify their compatibility. With the assistance of an analyser framework for

software components such problems will be visible and an appropriate

reaction can be performed. That framework determines the compatibility of

corresponding software components and can be used as a part of the

adaptation framework described in [Ras08]. A promising approach to

develop an analysing framework for software components is applying an

abstract syntax language tree (ASLT) [Wol07, W+04, Y+04]. The ASLT is

the hierarchical representation of object-oriented structures and provides the

appropriate information. With their assistance associations and couplings

between software components can be compared and proofed.

2 The Nature of Black-Box Software Components

At first black-box software components nature has to be discussed since the

analysing process is based on that software components. Chapter 2.1

describes the definition of black-box software components. The following

discussion clarifies that classes in an object-oriented programming

language, like Java, can be seen as software components on condition that

classes are logically coherent. The following chapter 2.2 defines the three

elements (component, component interface, component specification) of

software components. Chapter 2.3 discusses addressed problems if software

components will be connected.

Software components have some properties and can be characterized

by a definition. The term software component is defined in literature in

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 287

manifold ways. Some definitions try to define the term software component

in a general way without technical considerations. Other definitions

concentrate on the context in which the software components can be used.

For instance software components can be seen as parts of a software system

or they can be seen as service provider. To cover all aspects that are related

to software components in different context is probably not exhaustive

possible. Therefore we concentrates on the most convinced definitions in

this topic and excerpt a definition for adaptable software components.

2.1 Definitions

As one outcome of the first Workshop on Component-Oriented

Programming 1996 (WCOP´96) at European Conference on Object-

Oriented Programming 1996 (ECOOP´96) in Linz, Szyperski and Pfister

developed the following definition of the term software component:

“A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component

can be deployed independently and is subject to composition by third

parties.” [Muh97]

In other words this definition describes a software component which

consists of combinable pieces software. Pieces of software for instance in

the object-oriented programming language Java [***03a] can be a class.

This implies that a software component is more coarse-grained than a single

class. Logically coherent classes can be compounded to a software

component. Well defined interfaces of software components described by a

contract are a necessary premise for communicating between software

components. A contract, between a developer and a client is a precise

specification attached to an interface. It covers functional and extra-

functional aspects. Functional aspects include the syntax and the semantics

of an interface whereas the extra-functional aspects include the quality-of-

service guarantees [Szy02].

Additionally software components are designed not only for domain

specific applications. They encapsulate its implementation so that it is not

possible to have access to the construction details and therefore software

components are self-contained. Szyperski abstract this definition into a

technical part with considerations such as composition, independence, and

contractual interfaces and a market-related part with considerations such as

deployment, and third parties [Szy02]. This reflects the practical benefit for

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 288

the development process of software components.

Another important definition comes from Sametinger. In contrast to

the above mentioned definition Sametinger gives a more general definition

without consideration of market-related aspects. As one result, in the

following definition it is stated that software components are any reusable

artefacts. The used term artefact represents different forms of software

components. This can be source code or a black-box view that hides the

internal details of a software component for instance.

“Reusable software components are self-contained, clearly

identifiable artefacts that describe and/or perform specific functions and

have clear interfaces, appropriate documentation and a defined reuse

status”. [Sam97]

Self-contained software components mean, in Sametingers definition,

that a software component has its own functionality and do not need

additional software components or services to provide this functionality.

Furthermore software components should be contained in a file and not

being spread over many locations then it is identifiable. It has a clear

defined interface that hides details that are not needed for reuse. The

documentation (specification) must provide enough information to retrieve a

software component from a repository, gives information in which context

this software component can be used, make adaptations possible.

Furthermore the mentioned reuse status of Sametingers definition provides

release information of the software component.

The definitions discussed here, include only two representative

definitions. But the term coupling between software components are not

considered. The necessity to consider the notion coupling, is caused by

flexible combining of software components especially for adapt them. In

[WY03] the term coupling was taken into account and describes the level of

dependencies between interacting software components. Coupling between

software components will be differentiated into low coupling or high

coupling. The design of highly-coupled software components is based of

assumptions between them. Assumptions include for instance every time

availability of corresponding software components, syntax for invoking the

functionality of interacting software components or data exchange between

the software components has to be done every time in the same format.

Advantageous of this highly-coupled software components are increasing

the performance between the related software components. Disadvantageous

is the fact that the software components are specific designed to

communicate to each other. This means if requirements are changing for

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 289

instance in the direction of functionality then all related software

components have to adjust to the new situation. But in sense of adaptation

of software components it is not acceptable to redesign all related software

components because of additional costs, time and may be putting errors in

the new developed software. Therefore low coupling is a preferred approach

in which software components operate extensive autonomous via interfaces

and does not need to be concerned with other software components internal

implementation. This is important because changes in one software

component have no influence to the corresponding software component.

Thus the approach of low coupling is necessary to consider in the definition

of software components which can be adapted.

Derived from the above-mentioned discussion, the following

combination of definitions will be considered in the area of adaptation of

software components:

A software component is a piece of software which offers a coherent

functionality and exhibits certain autonomy by strict encapsulation of the

implementation. Flexible combining and separation of software components

are achieved by low coupling. Well defined interfaces, responsible for the

communication and interaction between components, include a specification

which additional describes the behaviour of the software component. The

internal structure of a software component will not be considered. Software

components can be composed of single software components to achieve an

extended functionality.

2.2 Elements of Software Components

The structure of software components characterizes different elements of

software components. Yang and Ward [WY03] define five elements of a

software component. That includes code, specification, interface, design and

documentation. We focus on the approach with the abstract view on three

structure elements of a software component. These are:

• Component

• Component interface

• Component specification.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 290

 Figure 1 shows a software component with its typical three elements and

its simple model representation. A well defined component interface is

required for communication and interaction with other software

components. It separates the software component to each other and is

described by a corresponding component specification. Incoming and

outgoing information/ services of software components will be processed by

the appropriate provided and required interfaces. The component is an

element that hides its internal structure for using of third parties. That is, it

provides the internal logic (e.g. classes in object-oriented programming)

which is not present for the client. Hence a component represents certain

behaviour and is addressed by the component interface.

Figure 1: Elements of a Software Component [7] with its simple Model

Software components are represented in different views depending on

their abstraction level. The abstraction level defines the different alternatives

of the access to the structure of software components. They can be

distinguished into black-box, white-box, glass-box and gray-box software

components. The scope of research is directed on black-box software

components. For instance a binary form of JavaBeans [***03b] can be a re-

presentation of a black-box software component.

2.3 Component Mismatch

The increasing productivity of the software development process is attended

by the ability of reusable software components to combine (compose) them.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 291

Composing applications out of reusable software components leads to

rapidly developing in contrast to developing software from scratch.

However systematic development of applications from existing software

components is an elusive goal. The reason for that is caused by:

• The inability to locate the desired software components

• The lack of existing software components

• Mismatches between software components to build applications.

To solve the problem of the inability to locate the desired software

component it is necessary to provide a component pool that catalogues and

categorizes the software components. So that is possible to retrieve a software

component for the desired needs. The lack of existing software components

leads to development of appropriate new software components. It is obviously

that this new components have to store into the component pool. The paper,

cited by [Ras08] discusses an approach that includes a component pool.

Reasons that software components cannot interoperate are described

by Shaw [Sha95]. To them belong different assumptions about how data is

represented, how they are synchronized and what semantics they have.

3 Abstract Syntax Language Tree

Source code of a programming language typically consists of instructions

stored in a text file. Additionally in object-oriented programming languages

hierarchical structures are defined too. Software projects can have a certain

amount of separated files. This leads to unclear programming structures and

the developer lost the overview. Just in the analysis of source code it is very

difficult to find irregularities and errors. The developer can have important

strategic advantages by administration of source code by using an ASLT.

This chapter describes the concept and the usage of the ASLT.

Advantageous is that the source code file is synchronized with the model

presented by the ASLT. This means no information is lost by transforming

from source code to ASLT and vice versa. The ASLT for the programming

language Java consists of the appropriate API and adequate tools for

transforming between source code and ASLT view.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 292

3.1 The ASLT Concept

The concept and the implementation of the Abstract Syntax Language Tree

(ASLT) is a collaborative work [Wol07] and are designed for source code

manipulation of an application. With the assistance of an ASLT the

processing (analysis) of software components shall be conducted. The

ASLT is the representation of object-oriented structures (packages, classes,

variables and methods), which become visible as hierarchical elements

(nodes). These nodes are depicting in Figure 2. It is a graphical

representation of the Java source code TestBed.java after

transformation into TestBed.aslt by using the tool CodeToASLT. This

transformation tool is part of the ASLT build. To show the hierarchical

structure of Figure 2 a viewer tool is necessary. It is named ASLT viewer.

Figure 2: ASLT Tree

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 293

 The ASLT is the basis for variants of implementation and/or views

(UML-class Diagram, UML-Sequence Diagrams, Component-Diagrams

etc.), which are made available to the developer (Figure 3). Each view offers

to the developer a special sight of a project. Thereby only certain parts of a

project will be represented, the remaining other parts becoming invisible by

folding (compare the ASLT tree Figure 2). The ASLT is the model for the

administration of hierarchic elements and particularly for the representation

and/or finding of meta-information, which is intended for semantic check of

software components [W+04, Y+04]. In this article, meta-information is not

the subject of discussion.

Figure 3: Use of the ASLT [WSYSR04]

4 Proposed Analysing Framework

The architectural design of a framework for analysing software components

provides an environment in which black-box software components are

checked whether they can match or not. The principle of that check is based

on identifying relations and dependency between software components.

Consequently the compatibility of corresponding software components will

be proofed. This chapter describes in general the approach to cope with that

components and show how the framework operates.

As mentioned before software components can be seen as a self-

contained unit with an appropriate interface for communication to its

environment. In the literature such software components are named black-

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 294

box software components. Such a black-box software component has certain

functionality, for instance it calculates the capacity of containers and

provides the result for further processing. Advantageous of black-box

software components is its reusability. Software components can be stored

in a data base to have a pool of software components with that it is possible

to compose large applications. That saves development time and costs.

To simplify the understanding process of the analysing framework, we

consider black-box software components as classes of an object-oriented

programming language (Java [***03a]). Existent relations and the

communications between classes, that will be applied in larger structures

(e.g. applications), must be consider because exchanging classes can have

different communication structures. Within integrated development

environments (IDE´s) such relations will be proofed during programming.

The IDE will advise programmers on errors, for example like declaration of

a wrong return type, by displaying information on the computer screen. But

what happens by composing software components? The IDE has no

influence during composing. To guarantee the compatibility of software

components (classes) we introduce an analyser framework. Its task is to

proof corresponding classes, and to react on exchange of classes or

modifications. With the assistance of the analyser framework the composing

process will be check and it provides error correction.

The user of the analyser does not know the internal details of the

framework essentially, because the framework provides interfaces for

communication and offers the result of the test process. That means the

analyser framework is easy to use. Pre-condition for developing an easy to

use framework for analysing classes is applying the concept of the ASLT.

[Wol07, Wol06].

4.1 Proposal

The concept to realise the analyser framework contains the verification of

communication between software components. Based on the object oriented

programming language Java we concentrate on classes as representative of

software components. This happens for simplifying the understanding

process. The communication between classes can be seen as the access to an

object of another class or the transfer of parameters.

Figure 4 depict the communication between three classes. The class

SampleClassA calls two methods from two different other classes. Those

are named SampleClassB and SampleClassC and provide the appropriate

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 295

methods. The communication between these classes is clear and the

compatibility is available.

Figure 4: Communication between Classes

Figure 5: Sample of Communication Problem between Classes

A different sample of communication between two classes is shown in

Figure 5. It is assumed that both classes working independent as software

components and shall be composed together. The class SampleClassA

tries to call the method doSomething(str). The parameter str is from

type String. In contrast to class SampleClassA with its method

doSomething(str), the method doSomething(number) of the

class SampleClassB is implemented with the parameter number from

type int. Obviously there is a communication problem. Problems as

described here can be avoided by analysing the corresponding classes. This

means all related classes have to be taken into account to find associations

between software components.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 296

The query of related classes respectively software components (Figure

6) about the relations delivers the necessary information for the analyser

framework. As mentioned before the task of the analyser framework is to

verify the compatibility of software components.

Figure 6: Relation between Software Components

Figure 4 and Figure 5 show the communication between classes based on

the programming language Java. In other words software projects are organised

in a hierarchical structure. Packages, classes, methods etc. are hierarchical

structure elements as known in object-oriented programming environments.

Classes can be seen as software components. The analyser framework will do its

work after one or more software components of a project are substituted, adapted

or modified. It looks on separate views of classes. A Java class can have different

occurrence. The source code of a Java class is only the textual representation of

the syntax of Java. However the compiled version is named as a binary

representation of the Java class. Both versions will not represent hierarchical

structures. But this is necessary for the analyser framework because this view on

a Java class gives the information of communication between related classes and

provides the possibility to manage and manipulate with that Java classes.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 297

With the assistance of the Java Reflection Application Programming

Interface (API) associations between software components will be located

during run-time. This is necessary if the used class is not defined during

compile time or information about that class has to collect during run time.

This means the Refection API is able to collect information about classes,

super classes, implemented interfaces, arrays, methods and attributes. The

class under test is represented by a java.lang.Class object. The Java class

Class is the main basis of Java Reflection. The analyser framework takes the

collected information and stores it into a Java Vector.

Figure 7: Analyser Framework and its Process

Additional a list of classes which communicates to the class under test

is required. For that reason Java classes will be transferred into the hierarchical

structure of the ASLT. After transferring into the ASLT form the information

will be stored into a second Java Vector. Now information of called methods,

transfer parameters and expected return types are available. This information

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 298

will be compared with the information of methods, parameter and return types

collected from the Reflection API. The result of comparing is stored into a

result Java Vector. If inconsistencies appear during that compare process an

error message will be created for further operation. Figure 7 depict the

functionality of the analyser framework.

5 Analyser Framework Implementation

This chapter describes the practical implementation and the functionality of the

analyser framework. For better understanding the appropriate classes and

methods are shown in an UML diagram. This software project is separated into

the framework part (Figure 8), which consider project information from an

outsourced file (Figure 9) and the test environment part (Figure 10).

Figure 8: UML Diagram of the Analyser Framework

5.1 Overview Analyser Framework

This chapter gives a short overview of implemented Java classes of the

analyser framework. It consists of the following four Java classes:

1. run.Main

2. toolbox.GetInfos

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 299

3. toolbox.Compare

4. outsourcing.Constants

The association between that Java classes and the implemented

method are depict in Figure 8. The class run.Main is used as access point

to the analyser framework and it contains the main method. The path to the

software project will be read and the Java Vectors for storing search

information will be implemented. The class toolbox.GetInfos is

responsible for collecting information about classes within that software

project by using the Java Reflection API and the ASLT API (see Figure 7).

The search provides the information about methods, parameter and return

types and will be compared in the class toolbox.Compare. The class

outsourcing.Constants represents an interface to the file

constants.properties (see Figure 9). That file defines properties to

configure the project.

Figure 9: Properties of Configuration File constants.properties

 The functionality of the analyser framework will be proofed by a test

environment that is depicting in Figure 10. It consists of three Java classes,

TestBed, SampleClassA, and SampleClassB. The method main() to starting

the test environment is implemented in the Java class TestBed.

SampleClassA and SampleClassB provide several methods to communicate

each other.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 300

Figure 10: UML Diagram of the Test Environment

Now the developer is able to manipulate the parameters or return

types of methods etc. to simulate an error. This error will be recognised by

the analyser framework and presents an error message on the computer

screen.

5.2 Java Class Description

Before applying the analyser framework it is necessary to make some

adjustments of project properties. This will be done in the file

constants.properties. The path to the test environment is configured by

assistance of the property PathToApplication. The property DebugLevel

defines the output level of search results and is represented by a number:

0: debug level is deactivated, no output information is given

1: essential class information (methods, parameter, and return types) will be

created and are available as output information on the computer screen

2: all .aslt and .class information will be shown on the computer screen

Different other properties define the type of file which has to be

considered and define the names of ASLT nodes which gives the

information for searching methods, parameter, and return types.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 301

The analyser framework will be running by starting the main()method

in the Java class run.Main. The DebugLevel and the PathToApplication

properties will be read at first. The names of the project files with the

extension .aslt and .class are stored into the appropriate Java Vector. The

method getClassInfos() contained in the Java class toolbox.Getinfos will be

called. With the assistance of the Java Reflection API gives that method

information about methods, parameter, and return types for storing into a

Java Vector. That necessary procedure is used to compare information that

is collected from the ASLT tree. For this purpose the method

getAllMethodCalls() collects the information. The search within the ASLT

tree gives the appropriate information of methods, parameter, and return

types. The ASLT tree represents the hierarchical structure of a software

project therefore it shows much information. To decrease the amount of

search information it is recommended to specify an access entry by using

the property ASLTJavaMethodInvokeExpression. Below this node within

the ASLT tree method calls are present. The ASLT API provides a method

getMethod()that gives the information of method calls within the ASLT tree

in the following form:

<ASLTJavaMethod>: class.method name

The resulting information about that search will be stored in a Java

Vector. The analyser framework calls the method getAllVariablesTypes()

that is implemented in the Java class toolbox.Compare. Together with the

method getAllTypes() a list with all variables from each ASLT-file (file

with extension .aslt) will be generated. To obtain the types of the variables

the ASLT-file will be scanned to find the entry

ASLTJavaVariableDeclaration that is defined as property in the

configuration file constants.properties. The result of this search provides the

desired list. The collected information will be compared by using the

method methodCalled() implemented in the Java class toolbox.Compare.

All method calls of the ASLT-files will be compared with the appropriate

.class-files. The analyser framework will compare the parameters and the

return types of the .aslt-files and .class-files in the case of conforming

method calls. Otherwise failures that occur during the comparing process

will be stored in the Java Vector allErrors. The analyser framework stores

the following information in the Java Vector:

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 302

ASLT class names

called .class-file

called method

expected and given parameter

expected and given return types

The method showAllErrors()implemented in the Java class run.Main

returns all error messages that occurred during the comparing process on the

computer screen. This last operation of the anlyser framework provides the

result to software developer. Due to that result the developer is able to

compose verified software components.

Conclusion

The use of reusable software components is advantageous in sense of

effective programming applications. Furthermore costs of software

development are calculable and therefore an extreme favourable alternative

to developing applications from scratch. Problematic of using software

components is their behaviour during composing.

Reusable software components will be used due to the use of new

technologies, error correction (e.g. mismatched interfaces) and

implementation of newer functionalities for example the fulfilment of user

requirements. In most of applications necessarily one or more software

components of an application has to be adapted or software components

must be added. But at least they have to analyse to verify their

compatibility. The described framework assists the developers work by

analysing software components. The application is submitted to an

analysing process and proof the coupling of related software components

and their functionality. This will be done by a framework. With the

assistance of this framework the goal is pursued of proving compatibility

and on a long-term basis to provide the functionality of the application.

Furthermore the aim is to be carried out a contribution to program software

products reliable in service.

The software development process used with the here presented

concept will be more transparent because of a comparison algorithm that

makes sure that software components can be match together. The

comparison algorithm uses information of Java classes that are transformed

into the ASLT. Without the assistance of the ASLT it is very extensive and

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 303

time-consuming to manage the analysing process. Favourable at this

proposed framework is reducing development time and avoiding

inconsistencies between software components.

References

[Ras08] Rasenack R.A. - Adaptation of Black-Box Software

Components. Proceedings of International Symposium XA2008,

European Conference on Computer Science & Applications,

Tibiscus University of Timisoara, Romania, ISSN 2065-7471,

2008.

[Sam97] J. Sametinger. Software Engineering with Reusable

Components, Springer, Berlin (D), 1997, ISBN: 3540626956.

[Sha95] M. Shaw - Architectural issues in software reuse: It’s not just

the functionality, it’s the packaging, SIGSOFT Softw. Eng.

Notes, 20 (SI):3–6, 1995.

[Szy02] C. Szyperski. Component Software: Beyond Object-Oriented

Programming. Addison-Wesley, London (GB), 2002. ISBN:

0201745720.

[SH04] Jean-Guy Schneider and Jun Han - Components – the Past, the

Present, and the Future. In Clemens Szyperski, Wolfgang

Weck, and Jan Bosch, editors, Proceedings of the Ninth

International Workshop on Component-Oriented Programming

(WCOP 2004), June 2004.

[Wol06] Wolke K.: Meta-Information and its Processing.

Fachhochschule Oldenburg/ Ostfriesland/Wilhelmshaven,

Standort Emden (D), Fachbereich Technik and STRL,

DeMontfort University Leicester (GB), 2006.

[Wol07] Karsten Wolke - Higher Availability of Services in

Heterogeneous Distributed Systems, PhD Thesis. Leicester

(GB), October 2007.

Anale. Seria Informatică. Vol. VII fasc. 1 – 2009
Annals. Computer Science Series. 7th Tome 1st Fasc. – 2009

 304

[WY03] M. Ward, H. Yang. Successful Evolution of Software Systems,

Artech House,London (GB), 2003. ISBN: 1580533493.

[W+04] Wolke K., Yermashov K., Siemsen K.H., Rasenack R.A., Abt C.

Abstract Syntax Trees for Source Code Management. Toolbox

Magazin(D), September/Oktober 2004.

[W+06] Karsten Wolke, Ingo Seeberg, Kostyantyn Yermashov, Karl

Hayo Siemsen and Rolf Andreas Rasenack, Abstract Syntax

Trees for Source Codes and Meta Information, Toolbox

magazine, Germany May/ June 2006.

[Y+04] Yermashov K., Wolke K., Siemsen K.H., Abt C., Rasenack R.A.

From Diagram to Source Code. Toolbox Magazin (D),

Mai/June 2004.

[***03a] Sun Microsystems - The Source for JavaTM Technology, 2003.

[***03b] Sun Microsystems - JavaBeans API Specification, 2003.

