Anale. Seria Informatica. Vol. VIII fasc. 1 — 2010
Annals. Comeuter Science Series. 8" Tome 1% Fasc. — 2010

An Exploratory Study of Critical Factors
Affecting the Efficiency of Sorting Techniques
(Shell, Heap and Treap)

Olusegun Folorunso, Olufunke R. Vincent, Oluwatimilehin Salako
Department of Computer Science,
University of Agriculture, Abeokuta, Nigeria
folorunsolusegun@yahoo.com

ABSTRACT. The efficiency of sorting techniques has a significant
impact on the overall efficiency of a program. The efficiency of
Shell, Heap and Treap sorting techniques in terms of both running
time and memory usage was studied, experiments conducted and
results subjected to factor analysis by.SPSS. The study revealed the
main factor affecting these sorting techniques was time taken to sort.

Introduction

Sorting is an operation that segregates items into groups according to a
specified ecriterion. It is any process of arranging items in some sequence
and/or in different sets, and accordingly. Sorting indicates the distribution of
grain size of sediments, either in unconsolidated deposits or in sedimentary
rocks. Poorly sorted indicates that the sediment sizes are mixed (large
variance); whereas well sorted indicates that the sediment sizes are similar
(low variance). It also means ordering- arranging items of the same kind,
class, nature, etc. This ordering makes this possible or easy to search a
specific data element from sorted elements [CKYO06]. In computer science
sorting is very much important. As efficiency is a major concern of
computing, thus data is sorted in order to gain the efficiency in retrieving or
searching tasks.

163

Anale. Seria Informatica. Vol. VIII fasc. 1 — 2010
Annals. Comeuter Science Series. 8" Tome 1% Fasc. — 2010

Sorting allows information to be put into a meaningful order. In any
database management system, sorting plays a big role [R+09]. All the data in
a database, is stored in a sorted and compact form by a database management
system. However, sorting techniques takes a very long time to sort large sets
of data. Sorting algorithms put elements of a list in a certain order mostly
numerical or lexographical. Efficient sorting is important to optimizing the
use of other algorithms such as search and merge algorithms that requires
sorted list to work correctly [Mil09]. Different ideas which lead to sorting
algorithms are insertion, exchange, merging selection, merging.

This paper aim at studying the efficiency with which sorting is
carried using shell, heap and treap sorting techniques. The efficiency of the
three techniques will be analysed in terms of both running time and memory
usage. The sorting time taken, memory consumed and total memory used
will be used in this study as decision variables to evaluate their efficiencies.

1. Background to Sorting Techniques

The oldest technique to sorting is the shell sorting which was proposed by
Shell [She59] and still in many cases holds its own against other competitors
due to its simplicity and the ability to use partially ordered sequences. It is
considered to be an elegant extension of insertion sort that gains speed by
allowing exchanges of elements that are far apart. It sorts slices with a
particular step h. Such a file is said to be h-sorted. If we first h-sort a file
using a large value h, elements move distances and the efficiency of A-
sorting for'smaller values of h improves. When the value of / equals 1, we
implement a regular insertion sort and thus get a sorted file.

The heap sort works as its name suggests. It begins by building a
heap out of the data set, removes the largest item and places it at the end of
the sorted array. After removing the largest item, it reconstructs the heap
and removes the largest remaining item and places it in the next open
position from the end of the sorted array. This is repeated until there are no
items left in the heap and the sorted array is full. Elementary
implementations require two arrays — one to hold the heap and the other to
hold the sorted elements [Wil64].

In treap sort, each node stores a key and a priority. The treap is a
binary search tree with respect to the keys and a heap with respect to the
priorities. The treap corresponding to a given set of key-priority pairs is
unique. Insertions into treaps are performed like in standard binary search

164

Anale. Seria Informatica. Vol. VIII fasc. 1 — 2010
Annals. Comeuter Science Series. 8" Tome 1% Fasc. — 2010

trees, followed by a sequence of rotations that restore the heap property. To
delete an element, we rotate it down to the bottom of the tree and then
remove it. The interesting property of treaps is that if the priorities are
chosen uniformly at random from the interval, then all the treap operations
take expected time 0 (log n) .

Shell, Heap and Treap sorting algorithms have their strengths and
weaknesses as to running time and system resources consumed. Three
factors, the time taken to execute the sort, the memory consumed and the
total memory used were considered in evaluating the three sorting
techniques. This paper aims at determining the most critical of the three
factors. Experimental results for the decision variables were generated from
an algorithm implemented in java in which the amount of numbers. sorted
were varied for the three different sorting techniques. Factor analysis by
principal components of the obtained experimental data was carried out
using Statistical Package for Social Scientists. (SPSS) for the purpose of
estimating the contribution of each factor to the success of the sorting
algorithms and one factor was extracted. Further statistical analysis was
carried out to generate eigenvalue of the extracted factor. The eigenvalue
forms the basis for estimating the’ contribution of the extracted factor.
Moreover, a system of linear equations which can be used to estimate the
assessment of each assessor of the sorting techniques is proposed.

2. Materials and Methods

The decision variables of the impact of time taken, memory consumed and
total memory used relate to one another. The general form of the
mathematical model for evaluating the decision variables is presented as:

[

Y, = Zﬂ"*"_x" wi=123,..,m eqn (1)

k=1

Where Y; represents the i™ assessor’s observation of decision variable Xi;
th . . . 'zth

a; represents the assessment of k" decision variable by i" Assessor.

This mathematical model can be expressed as:

165

Anale. Seria Informatica. Vol. VIII fasc. 1 — 2010
Annals. Comeuter Science Series. 8" Tome 1% Fasc. — 2010

+a;a X3l

]
=
=

' IB

+

:
- { . . (eqn 2)
m1 X1+ - +tama X

The factor analysis by principal components is adopted in the evaluation of
the decision variable of the impact of time. The primary goal is to obtain the
contribution of each of the factors to the efficiency of the sorting techniques. The
following statistics were generated and used for the above stated objective:
Descriptive statistics, Correlation matrix, Bartlett’s test and Kaiser-Mayer
Olkin (KMO), Communalities, Initial factor loadings, Rotated factor
loadings, Factor score coefficient matrix, Eigen values.

The descriptive statistics presents the mean and standard deviation of
the raw score of each performance indices given by the sample Assessors.
The correlation matrix presents the degree of pair wise relationships of the
performance indices. The Bartlett’s test of sphericity is used to test the
adequacy of the sample population. Another measure of the adequacy of
sample population is Kaiser-Mayer Olkin (KMO).

In factor analysis, there is a setof factors which is generally referred
to as ‘common factors’ each of which loads on some performance indices
and another set of factors whichrare extraneous to each of the performance
indices. The proportion of a variance of a performance indices explained by
the common factor is called the ‘communality’ of the performance indices.
The communality of the performance index ranges between 0 and 1, where
0 indicates that the common factors explains none of the variance and 1
indicates that all the variance is-€xplained by the common factors.

According to [AAUOQ09], the component matrix presents the initial
factor [loadings. The factor loadings associated with a specific index is
simply the correlation ‘between the factor and the standard score of the
index. The degree of generalization found between each index and each
factor is referred to as ‘factor loading’. The farther away a factor loading is
from zero in“the positive direction, the more one can conclude the
contribution of an index to a factor. The component matrix can be rotated by
varimax, promax, equamax or quartimax for the purpose of establishing a
high correlation between indices and factors. The factor score coefficient
matrix can be used to evaluate the assessment of each Assessor is generated.
In compliance with earlier researchers [AAU(09], the eigenvalues and
percentage variance of the factors considered are generated, as well, for the
purpose of evaluating the contributions of each factor to the efficiency of the
sorting techniques.

166

Anale. Seria Informatica. Vol. VIII fasc. 1 — 2010
Annals. Comeuter Science Series. 8" Tome 1% Fasc. — 2010

2.1.Data Collection, Analysis and Interpretation of Results

Algorithms implemented in java were used to generate experimental data for
the three various sorting techniques. The number of values to sort was
varied for the three sorting techniques which produced different results for
the ‘time taken’, ‘memory consumed’ and ‘total memory used’. For the shell
algorithm the input is an array a of length n while the output is a sorted
array. The input for the Heap Algorithm is an almost complete binary tree
with root 7 and vertex labeling a while the output is an ordered/sorted Array.
It uses the procedure of buildheap() and downheap(). The treap algorithm
finds insertion point and the & and continues until sortingis achieved.

2.2.Data Generated

The descriptive statistics of the data collected exhibits the mean and
standard deviation of the rating of the.impact of time and memory on the
efficiency of the sorting techniques by the experimental results generated.
For example, the mean and standard deviation of the rating on memory
consumed in bits for shell sort are 1080681.33 and 170074.128 respectively.
For Treap, the mean and standard deviation of the rating on memory
consumed in bits is'1265118.00 and 43517.031 respectively and 1349945.33
and 111522.008 for that of Heap. Thereafter, the final data were subjected to
factor analysis by principal components using SPSS package.

The extraction method was by principal component analysis and the
rotation’ method promax -with Kaiser Normalization. According to the
computed analysis, Heap sort for instance shows that the correlation of
0.172 exists between ‘memory consumed’ and ‘total memory used’. The
correlation of 0.869 exists between ‘memory consumed’ and ‘time taken’ to
sort. The implication is that ‘memory consumed’ is not likely to share the
same factor with ‘total memory used’. On the other hand, ‘memory
consumed’ is very likely to share the same factor with ‘time taken’ to sort.
The Bartlett’s test for Heap sort for instance produces a X* of 140.036,
degree of freedom of 3 and a significance level of 0.000, which indicates the
adequacy of the sample data. The results obtained from the Bartlett’s test
and KMO test are good indicators of the suitability of factor analysis as
well.

167

Anale. Seria Informatica. Vol. VIII fasc. 1 — 2010
Annals. Comeuter Science Series. 8" Tome 1% Fasc. — 2010

The communalities of the performance indices generated for the
sorting techniques with principal component analysis as the extraction
method are presented in tables 1 through 5, with initial values for all three
factors (time taken (nano second), memory consumed (bits), total memory
used (kb)) considered taken as 1.000 for heap, treap and shell methods.

Table 1: Component Score Coefficient Matrix for Heap

Component
1 2 3
Time taken(nano second) -.699 1.671 -.815
Memory Consumed(bits) .822 -.344 438.933
Total memory used(KB) .849 -.355 -437.960
Table 2: Component Score Coefficient Matrix for Treap
Component
1 2 3
Time taken(nano second) -.602 1.575 -.657
Memory Consumed(bits) 813 =311 -184.432
Total memory used(KB) 163 -.292 185.244
Table 3: Component Score Coefficient Matrix for Shell
Component
1 2 3
Time taken(nano second) -.141 1.122 -.370
Memory Consumed(bits) 555 -.070 450.224
Total memory used(KB) 567 -.071 -449.419

The generated component score coefficient matrices are used to
estimate the assessment of each assessor of the impact of time and memory
on the efficiency of the sorting techniques.

This can be achieved by formulating a linear equation of the form:

3
C‘--—_‘b-S- i—1,2,..1m j—1 E 3
5] L kg~ ik L O qn()
k=1

Where C;; represents the contribution of ith assessor to ™ factor; by,
represents the component score coefficient of kth decision variable for ;'

168

Anale. Seria Informatica. Vol. VIII fasc. 1 — 2010
Annals. Comeuter Science Series. 8" Tome 1% Fasc. — 2010

factor; S;; represents the standard score of ith assessor for k™ decision
variable and » represents the number of sampled assessors.
S x 1s estimated by:

(x, +,)
d.

l

S, =A+ Eqn (4)

Where A represents the allowable minimum raw score for decision variable;
in this instance , it is /; x; represents the raw score of ith decision variable; y;
represents the mean of the raw scores of ith decision variable; d; represents
the standard deviation of the raw scores of i decision variable. For each
sampled Assessor, the system of linear equations for-the single. extracted
factor can be represented as follows:

bl,lSi,l + bZ,ISi,Z +...t b4,1Si,4 = Ci,l Eqn (5)

In an attempt to evaluate the percentage contribution of each factor
to the efficiency of the sorting techniques, the eigen value of each factor is
generated. The eigen value of jth factor denoted by ‘E;’ is calculated by:

3
E; = ZXEEJ i1=123 j=1 Eqn (6)
k=1

Where X; jrepresents the loading of ™ factor on ith decision variable.
The eigenvalue is used to indicate how well each of the factors fits
the experimental data. The percentage

P =100 (=L) Hqn (7)

Where n represents the number of decision variables considered in our
study. Tables 4 to 6 present the eigenvalues, the percentage contribution and
cumulative percentage contribution of the three considered factors for each
of the three sorting techniques according to [AAU09].

169

Anale. Seria Informatica. Vol. VIII fasc. 1 — 2010
Annals. Comeuter Science Series. 8" Tome 1% Fasc. — 2010

Table 4: Eigen value generated for Heap

Rotation Sums of
Initial Eigenvalues Squared Loadings
Component Total % of Variance | Cumulative % Total
1 2.969 98.966 98.966 2.826
2 .031 1.034 100.000 2.720
3 2.519E-6 8.396E-5 100.000 .094
Table 5: Eigen value generated for Treap
Rotation Sums of
Initial Eigenvalues Squared Loadings
Component Total % of Variance | Cumulative % Total
1 2.962 98.748 98.748 2.822
2 .038 1.251 100.000 2.704
3 1.419E-5 .000 100.000 .090
Table 6: Eigen value generated for Shell
Rotation Sums of
Initial Eigenvalues Squared Loadings
Component Total % of Variance | Cumulative % Total
1 2.840 94.677 94.677 2.705
2 .160 5.323 100.000 2.425
3 1.854E-6 6.178E-5 100.000 .699

The three factors contribute a total of 100% to the efficiency of the
three sorting techniques. From the results, ‘time taken’ contributed 98.966%
and ‘memory consumed’ contributed 1.034% impact on the efficiency of
Heap sorting technique. This can be visualized in Figure 1.

170

Anale. Seria Informatica. Vol. VIII fasc. 1 — 2010

Annals. Computer Science Series. 8" Tome 1* Fasc. — 2010

350

300

250 -

200 Shell
150 - \ Treap
100 Heap

50 %
0

Time taken Memory Total memory
consumed used

Figure 1: Comparison of sorting techniques based on factors considered

Concluding Remarks and Future Work

The efficiency with which sorting is carried out often has a significant impact on
the overall efficiency of a program. The efficiency of Shell, Heap and Treap
sorting techniques in terms of both running time and memory usage was studied,
experiments conducted and results subjected to factor analysis by SPSS. The sort
time taken, memory consumed and total memory used was used as decision
variables to evaluate their efficiencies. Experimental results for the decision
variables were generated from a software tool in which the amount of numbers
sorted were varied for the three different sorting techniques. The results were
subjected to factor analysis using Statistical Package for Social Scientists (SPSS)
to test the level at which each of the factors affect the sorting techniques. Eigen
values‘'were used to indicate how well each of the extracted factors fits the data
from the experimental results. From the analysis results, the main factor affecting
the sorting techniques was the time taken to sort. It contributed 98.97%, 98.75%
and 94.68% for Heap, Treap and Shell respectively. The Memory consumed
came second contributing 1.03% for Heap, 1.25% for Treap and 5.32% for Shell.
Total memory consumed was the least of the factors contributing negligible
percentages for the three sorting techniques.

In summary, ‘time taken’ to sort is the main factor affecting the
efficiency of the sorting techniques. It was observed that for small data set,
shell sort performs better than both heap and treap sort. For small dataset, treap
sort has the worst performance, but as the dataset increases, shell running time
increases as well more than heap and treap. Since in most real life applications
today, dataset are always very large, shell sort does not seem promising. Treap

171

Anale. Seria Informatica. Vol. VIII fasc. 1 — 2010
Annals. Comeuter Science Series. 8" Tome 1% Fasc. — 2010

sort averagely has the best performance in terms of running time especially
when the data set becomes larger. Also, for memory usage, the treap algorithm
used the least memory for operation compared to other algorithms. However, as
opposed to the case of running time, shell sort consume less memory when
compared to that of heap sort technique. Therefore, it can be concluded that
treap sort is a more efficient sorting technique in terms of both running time
and memory usage than shell and heap sort most especially when the dataset is
very large. Finally , since ‘time taken’ is to be considered the most paramount
factor to users, heap sort performs better than shall so it will be a better option
after treap, otherwise, shell is more efficient. In future ~-work, system
environment and software factors could be explored as other factors affecting
sorting by these methods. Also, the number of sorting methods could be
increased from three to four, five, six or more to get better results.

References

[AAUO09] C. O. Akinyokun, C. O. Angaye, M. O. Ubaru — Factor Analysis of
the Performance -Indices’ of Information and Communications
Technology Projects in the Public Sector of the Nigerian Economy.
Journal of Technology Research, Vol. 1, April, 2009.

[CKY06] C. Chen, L. P. Khoo and W. Yan - An investigation into
affective design using sorting technique and Kohonen self-
organising map, Advances in Engineering Software, Vol. 37,
Issue 5, 334 — 349, 2006.

[Mil09] J. Milum - Proc Format, a Speedy Alternative to Sort Merge, Wachovia
a Wells Fargo Company, Charlotte, NC. SAS Global Forum, 2009.

[R+09] M. O. Rahman, M. A. Hannan, E. Scavino, A. Hussain and H.
Basri - An Efficient Paper Grade Identification Method for

Automatic Recyclable Waste Paper Sorting, European Journal of
Scientific Research, Vol.25 No.1 (2009), pp.96-103, 2009.

[She59] D. Shell - 4 high speed sorting procedure, Common ACM 2, pg
30-32, 1959.

[Wil64] 1. W. J. Williams - ACM algorithm 232: Heap sort. Commun. of
ACM., 7: 347-348, 1964.

172

