

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 197

IImmpplleemmeennttaattiioonn aanndd EEvvaalluuaattiioonn ooff PPOOVV--RRaayy oonn DDeesskkttoopp

GGrriiddss:: PPaarraalllleell RReennddeerriinngg ooff 33DD IImmaaggeess aanndd AAnniimmaattiioonnss

AA.. MM.. RRiiaadd
11
,, AA.. EE.. HHaassssaann

22
,, QQ.. FF.. HHaassssaann

11

1
Department of Information Systems, Faculty of Computers and

Information Systems, Mansoura University, Mansoura, Egypt
2
Department of Electrical Engineering, Faculty of Engineering,

Mansoura University, Mansoura, Egypt

ABSTRACT: This paper discusses the implementation details of

a grid-based rendering framework for POV-Ray on desktop grids.

Our goal is to present how enterprises can build desktop grids in

Windows environment in order to enable semi-real time rendering

for 3D models, both images and animations, defined with POV-

Ray. Algorithms, code and technical details are given for easy and

efficient implementations. We think this work could be useful for

both researchers and developers who are interested in the grid

computing technology and its applications.

KEYWORDS: Grid Computing, Computer Graphics, Desktop

Grids, Ray Tracing and POV-Ray,.NET Framework, Alchemi,

parallel Rendering for 3D Models.

Introduction

In our previous paper titled, “On Harnessing Desktop Grids for Semi-Real

Time 3D Rendering: A Case Study on POV-Ray” [RHH11], we introduced

the main concepts of the ray tracing and grid computing methodologies as

well as the installation and configuration details of two enabling

technologies, namely POV-Ray and Alchemi, respectively. The paper also

discussed our grid-based framework that enables the parallel rendering of

the POV-Ray models on desktop grids. This work continues the original

work by exploring the implementation details of the grid-based rendering

framework of both 3D images and animations. The remainder of this paper

is organized as follows: Implementation details of the parallel rendering

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 198

algorithm of images are discussed in section 1. Section 2 discusses the

implementation details of the parallel rendering algorithm of animations.

Experimental results and the evaluation of our algorithms are discussed in

Section 3. Last section concludes the paper and points out the future work.

1. Parallel Image Rendering

Each image is composed of a set of rows and columns of pixels –this is what

is known as the image resolution. The ability to slice an image up into a set

of meaningful segments (e.g., of rows, columns or rectangular tiles), in

order to concurrently render them on different computers, can drastically

decrease the time needed to generate the final output.

 In our implementation, we decided to subdivide the rendering task of

one image into a number of subtasks where each subtask encompasses a set

of rows. That is, our algorithm has three consequent phases: Render, Crop

and Combine (RCC).

 Fig. 1 illustrates the rendering flowchart of a single image on the grid

using our algorithm. As listed, the proposed algorithm is simple to

understand and implement:

1. The end user specifies the height and width of the target image along

with the passed “.pov” file. In addition, the user can optionally define

the number of rows per job and pass it to the client application.

2. The client application creates the grid jobs and submits them to the

manager node. Each job has a rendering command for a portion of the

target image.

3. The manager node passes the queued jobs to the connected executors.

4. Each executor launches the POV-Ray application by starting an external

process in Windows using the/ a “Process” class provided by .NET

Framework.

5. POV-Ray generates the (partial) image according to the specified options

and then saves it to the specified output path. Implementers should note

that all grid nodes should have a shared output path so that the executors

can save the rendered outputs. This can be accomplished by using a

network drive or a database where all nodes have access to.

6. Each of the completed jobs generates a full-sized image which has an

empty (black) portion in addition to the segment that contains the

rendered data.

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 199

Figure 1. Grid-enabled rendering for one POV-Ray Image

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 200

7. When one job is finished, the client application crops the rendered image

to create a smaller image with only the non-empty segment –after

removing the black portion.

8. If any of the jobs fails, the client application will queue it in a temporary

list in order to re-process it again either on the grid or on the client

machine.

9. When all jobs are successfully completed, the client application merges

the cropped images according to their original order to produce the final

image.

 We have tested our algorithm during its implementation to generate

the outputs of each step so that the readers can better understand the idea.

We have used four executors to render the “stackerday.pov” scene, which is

one of the installation components of the POV-Ray application. As

illustrated in Fig. 2, the generation process of our test scenario took place

on the four executors by splitting the rendering phase into four simpler

rendering subtasks. The generated outputs of each of these subtasks are also

presented including the final image.

 As illustrated in listing 1, we need to pass the connection string of our

grid in order to make use of it. The connection string includes the address

and port of the Manager node as well as the users’ credentials. We instruct

the deployed grid that it is going to deal with our application by passing our

class which implements the GThread type (i.e., PovRayThread).

Listing 1. Snippet from the client application showing how we could connect to the grid

//Get settings from user and connect to the grid

GConnection gc = GConnection.FromConsole("localhost", "9000", "user",

user");

//Create a new grid application

app = new GApplication(gc);

app.ApplicationName = "POV-Ray";

//Add the module containing the PovRayThread to the application manifest

app.Manifest.Add(new ModuleDependency(typeof(PovRayThread).

Module));

 As illustrated in listing 2, we create a set of grid jobs according to the

width of the target image and the number of rows included in each job. The

created jobs will include the rendering arguments that will be passed to

POV-Ray via a command-line.

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 201

Listing 2. Snippet showing the creation of the rendering jobs

for (int i = 0; i < numberOfThreads; i++)

{

 PovRayThread job = new PovRayThread();

 job.PovRayPath = pvenginePath;

 job.PovFileName = povFileName;

 job.OutputPath = outputPath;

 job.ImageFileName = imageFileName;

 job.Height = height;

 job.Width = width;

 job.StartRow = startRow;

 job.EndRow = endRow;

 if ((i + 1) == numberOfThreads)

 job.NumberOfRows = remainingRows;

 else

 povrayThread.NumberOfRows = numberOfRowsPerThread;

 app.Threads.Add(povrayThread);

}

 As shown, the application creates a number of grid jobs, each of

which has a set of properties that defines the rendering settings:

• PovRayPath: Sets the path of the POV-Ray application

(“pvengine.exe”). The POV-Ray executable must exist in the same

location on all executors; otherwise some jobs may fail. Although we

have hard coded the value of this property in our sample code,

implementers should place it in the configuration file (e.g., App.config

or Web.config) so that they can change it whenever needed. The purpose

of hard coding such values is simplicity; however, configuration values

offer higher flexibility.

• PovFileName: Sets the path of the input “.pov” file.

• OutputPath: Sets the output path where the rendered image will be

saved. This value combined with the value of ImageFileName is mapped

to the +O option in the rendering arguments.

• ImageFileName: Sets the name of the rendered image.

• Height: Sets the height of the rendered image. This value is mapped to

the +H option in the rendering arguments.

• Width: Sets the width of the rendered image. This value is mapped to the

+W option in the rendering arguments.

• StartRow: Sets the row where the rendering task begins. This value is

mapped to the +SR in the rendering arguments.

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 202

• EndRow: Sets the row where the rendering task stops. This value is

mapped to the +ER in the rendering arguments.

 As illustrated in listing 3, we get notified about the status of our

rendering jobs by handling Alchemi events in our client application. It also

illustrates how we can start jobs processing on the grid.

Listing 3. Snippet from client application showing subscription for Alchemi events

//Subcribe to events

app.ThreadFinish += new GThreadFinish(ThreadFinished);

app.ApplicationFinish += new GApplicationFinish(ApplicationFinished);

app.ThreadFailed += new GThreadFailed(ThreadFailed);

//Start the grid processing

app.Start();

 As illustrated in listing 4, the implementation of our algorithm is

simple. The code basically launches a Windows process to start the POV-

Ray application, and executes the rendering job by passing a command-line

with a set of arguments that defines the rendering options.

Listing 4. Snippet from PovRayThread class showing “Start()” method which

contains the rendering logic

public override void Start()

{

 string arguments = String.Format("+W{0} +H{1} +A +SR{2} +ER{3}

+O\"{4}\" /EXIT /RENDER \"{5}\"", width, height, startRow, endRow,

outputPath + "\\" + imageFileName, povFileName);

 Process process = new Process();

 process.StartInfo.FileName = povrayPath;

 process.StartInfo.Arguments = arguments;

 process.StartInfo.WorkingDirectory =

Path.GetDirectoryName(povFileName);

 process.StartInfo.UseShellExecute = false;

 process.StartInfo.CreateNoWindow = true;

 process.StartInfo.RedirectStandardError = false;

 process.Start();

 process.WaitForExit();

}

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 203

Figure 2. Image rendering phases using the RCC algorithm

 In addition to the aforementioned rendering arguments, we have used

the following three options:

• +A: Enables or disables anti-aliasing for the generated image. Passing this

option will instruct POV-Ray to generate a high-quality output, but this

could considerably increase the amount of time taken to render the image.

• /EXIT: Instructs POV-Ray to exit after completing the rendering task.

Although this option is not required to complete the rendering tasks, we

decided to use it to save the computing resources available on the

connected executors. The user is able to launch as many instances of

POV-Ray as he needs by unmarking the “Keep Single Instance” option

in the “Options” menu. However, this action will cause our client

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 204

application to launce numerous instances of POV-Ray on each executor

which may lead to a memory leak.

• /RENDER: Instructs POV-Ray to render the passed “.pov” file.

2. Parallel Animation Rendering

Any animation movie is composed of a sequence of still pictures known as

frames. The quality and smoothness of the rendered animation depends on

both the quality of the used images and the number of frames per second. In

other words, the higher the quality of the used images and the more frames

per second, the smoother and more photorealistic the rendered animation.

The average number of frames in an animation usually varies from 24 to 30

frames per second. Thus, with a simple calculation, the rendering of a

professional 20-second scene, at the rate of 30 frames per second, would

require an artist to render 600 images (20x30). Rendering 600 images on a

single computer may take hours or even days to complete –even while using

a modern and powerful hardware.

 With desktop grids, the task of rendering different frames can

concurrently take place on the available network of computers. Furthermore,

finer jobs, where each frame is broken into several sub-frames (slices), or

coarser jobs, where several images are grouped together, can be created to

render the whole scene.

 In POV-Ray animation, settings are defined in the “.ini” file which is

placed along with the actual “.pov” file. This file normally includes

information about the initial frame, the final frame, the initial clock value,

and the final clock value. Additional information such as anti-alias toggle,

anti-alias threshold and depth, and cyclic animation could also be defined in

the “.ini” file. With “.ini” files, users are freed from manually creating the

animation sequence. In other words, “.ini” files are responsible for

automatically creating the animation frames out of the assigned “.pov”

according to the defined settings.

 Animation in POV-Ray is managed by means of a clock variable

where each frame is assigned with a float value between 0.0 and 1.0 that

defines its ordering in the whole scene. Grid implementers can manually

obtain clock values between 0.0 and 1.0 using this simple equation: frame

number / total number of frames. For example, calculating the clock

indicators for 30-frames would generate a sequence of values of 1/30

(0.333), 2/30 (0.666), 3/30 (0.1), 4/30 (0.133) and so forth.

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 205

 Michael Head introduced the use of an unofficial release of POV-Ray

namely, MegaPOV to render a set of grid jobs created with .NET and

Alchemi where each job contains only one frame [Hea07]. As will be

discussed later, creating fine-grained jobs that contain single frames may

incur a performance overhead especially when created for very small and

simple frames, due to excessive network traffics, as well as starting and

ending the rendering processes.

 In this section, we introduce the creation of jobs that encompass

groups of frames which are rendered on the grid using the official releases

of POV-Ray. To accomplish this goal, the rendering command should

include the initial and final frames of the scene being processed. These

values will change with the animation and rotation of the scene’s objects.

 Fig. 3 illustrates the flowchart of the video rendering process which is

composed of the following simple steps:

1. The end user specifies the height and width of the frames, the total

number of frames, and the number of frames in each grid job along with

the passed “.pov” file.

2. The client application creates the grid jobs and submits them to the manager

node. Each job has a rendering command for the targeted image.

3. The manager node passes the queued jobs to the connected executors.

4. Each executor launches the POV-Ray application by starting an external

process in Windows using the “Process” class provided by .NET Framework.

5. POV-Ray generates the frames according to the specified options and

then saves them to the specified output path. Again, implementers

should note that all the grid nodes should have a shared output path for

the executors to save the rendered outputs in. This can be accomplished

by using a network drive or a database that all nodes have access to.

6. If any of the jobs fail, the client application will queue it in a temporary list

in order to re-process it again, either on the grid or on the clients’ machine.

7. When all jobs are successfully completed, implementers should make

sure that all rendered jobs are in the correct order. Rendered tasks do not

usually return to the client application in order. This is subject to the

availability of grid resources and the processing speed of each node.

This means that implementers are required to write a small module or a

set of functions to re-order the rendered frames. The re-ordering module

should uniquely identify each rendering task before sending it to the grid

in order to be able to properly reorganize them upon completion. To

make the organizing process easier, this module creates a temporary

subdirectory for each rendering task in the root output directory to

separate the generated frames from each other.

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 206

Figure 3. Grid-enabled rendering for one POV-Ray animation

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 207

 After the frames rearranging process takes place, implementers are

able pass the generated frames to a tool that combines them creating a video

file. This can either be done manually by the artist or defined automatically

by a simple code in the handler of the “ApplicationFinished” event. A

number of tools that can combine “.bmp” files into “.avi” or “.mpeg” videos

are available. EasyBMPtoAVI is an example of free “.avi” tools

(http://easybmp.sourceforge.net/download.html).

 As illustrated in listing 5, our video rendering algorithm is mainly

concerned with the creation of grid jobs that contain several frames. We

calculate the values of the initial and final clock values as well as the initial

and final frames while iterating through the total number of frames specified

by the end user. Since we use the same equation (“i / numberOfFrames”

where “i” is the current frame being processed) to calculate the initial and

final clock values, we have defined the “getInitialValues” as a flag variable

to differentiate between both values. Our differentiation condition is: “(i +

1) % numberOfFramesPerJob = 0” which computes the remainder after

dividing (i + 1) by numberOfFramesPerJob using the modulus operator (%).

If the remainder equals zero then a new job will be created to encapsulate a

new set of frames; otherwise the current frame will be added to the

previously created grid job. The same concept applies to the calculation of

the initial and final frames in each iteration. In other words, the value of the

initial frame will only increment with the creation of each new grid job,

whereas the value of the final frame will only increment while the

previously created job is being used.

 The new properties we defined here are:

• InitialClock: Sets the initial clock value. This value is mapped to the

+KI option in the rendering arguments.

• FinalClock: Sets the final clock value. This value is mapped to the +KF

option in the rendering arguments.

• InitialFrame: Sets the initial frame to be rendered in the animation

sequence. This value is mapped to the +KFI option in the rendering

arguments.

• FinalFrame: Sets the final frame to be rendered in the animation

sequence. This value is mapped to the +KFF in the rendering arguments.

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 208

Listing 5. Snippet from a client application showing the creation of the grid

jobs that contain several frames

//Flag variable to toogle between the calculation of the initial and final

frames and the initial and final clock values

bool getInitialValues = true;

int initialFrame = 1, finalFrame = 1;

double initialClock = 0, finalClock = 0;

//Iterate through the toal number of frames

for (int i = 1; i <= numberOfFrames; i++)

{

 if (getInitialValues)

 {

 //Calculate initial clock and initial frame

 initialClock = i / numberOfFrames;

 initialFrame = i ++;

 getInitialValues = false;

 }

 if ((i + 1) % numberOfFramesPerJob == 0)

 {

 //Calculate final clock and final frame

 finalClock = i / numberOfFrames;

 finalFrame = i ++;

 getInitialValues = true;

 PovRayVideoThread job = new PovRayVideoThread();

 povrayThread.PovRayPath =

@”C:\Users\Qusay\AppData\Roaming\POV-Ray\v3.6\bin\pvengine.exe”;

 job.PovFileName = povFileName;

 job.OutputPath = outputPath;

 job.InitialClock = initialClock;

 job.FinalClock = finalClock;

 job.InitialFrame = initialFrame;

 job.FinalFrame = finalFrame;

 job.Height = height;

 job.Width = width;

 job.Threads.Add(job);

 }

}

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 209

 Listing 6 illustrates the new set of arguments used to render a group of

video frames. Since the remaining logic of the “Start()” method is identical

to the one used to render POV-Ray images, and for the sake of simplicity,

we have excluded it.

Listing 6. Snippet from PovRayVideoThread class showing the command-line

arguments used by the “Start()” method

string arguments = String.Format("+W{0} +H{1} +O\"{2}\" +KI\"{3}\"

+KF\"{4}\" +KFI\"{5}\" +KFF\"{6}\" /EXIT /RENDER \"{7}\"", width,

height, outputPath, initialClock, finalClock, initialFrame, finalFrame,

povFileName);

Figure 4. Grid-enabled rendering for one POV-Ray animation

 Fig. 4 illustrates 99 frames of the “bounce.pov” scene, which were

rendered using our algorithm. The “bounce.pov” scene is one of the

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 210

installation components of the POV-Ray application and it is, simply, for a

ball falling from the top left side and keeps bouncing towards the right side

until it hits the wall, and then starts bouncing back up to the left side

3. Experimental Results

We have evaluated our algorithms using a test-bed composed of three laptops

with different hardware specifications. We first evaluated the rendering of the

“bounce.pov” models at different resolutions (800 x 600, 1024 x 768, 1366 x

768 1600 x 1200 pixels) separately on each node, and then we connected the

three nodes together to test the grid-enabled framework.

 Table 1 lists the hardware specifications of our test-bed. Windows 7

was installed on all nodes and a 100mbps switch was used to connect them.

 Since Node 1 is the most powerful node in our test-bed, we have

installed both the Alchemi Manager and the Executor components on it to

play both roles. The client application was also installed on Node 1, whereas

all outputs were saved on Node 2 in a shared directory assigned with the

needed access permissions.

Table 1. Hardware Specifications

Node Number Processor RAM

Node 1

(Manager + Executor + Client Application)

Intel Core i5

2.3 GHz
4.00 GB

Node 2

(Executor + Output Storage)

Intel Core i3

2.53 GHz
3.00 GB

Node 3

(Executor)

Intel Core 2 Due

2.26 GHz
4.00 GB

 Before delving into the evaluation details, we should point out that

while evaluating our solution we have tried different sizes for our grid jobs.

We noticed that both very large and very small jobs were the least efficient

and slowest of the techniques. Rendering very large jobs that contain many

rows in each slice takes a long time as the total number of the grid jobs are

reduced resulting in a semi-serial rendering (with the possibility that some

of the connected computers are not assigned with some jobs) rather than

parallel rendering. Contrarily, creating very small grid jobs incurs a large

number of roundtrip traffics between the connected nodes, and extra time is

needed to start and end the rendering processes as well.

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 211

 In order to test the grid-based techniques, a size of 50 - 100 rows per job

for rendering images and 50 - 100 frames per job for rendering animations was

the most efficient size for our implementation. Certainly this number should

increase and decrease accordingly with the total number of the grid nodes and

image rows/animation frames. Also, the size of the jobs should be smaller in

case of building a grid out of computers with different specifications in order to

enable the grid manager to better schedule these jobs. In our test scenario, we

have configured each job to include 80 rows for the image rendering case, and

80 frames for the animation rendering case.

 As illustrated in Fig. 5 and 6, the total rendering time of the

“stackerday.pov” image is drastically reduced when rendered on the grid:

• The rendering at a resolution of 800 x 600 pixels on the grid is 205%,

~247% and 440% faster than the serial rendering on Node1, Node 2 and

Node 3, respectively.

• The rendering at a resolution of 1024 x 768 pixels on the grid is 225%,

~329% and ~478% faster than the serial rendering on Node1, Node 2

and Node 3, respectively.

• The rendering at a resolution of 1366 x 768 pixels on the grid is ~217%,

~320% and ~410% faster than the serial rendering on Node1, Node 2

and Node 3, respectively.

• The rendering at a resolution of 1600 x 1200 pixels on the grid is ~226%,

~304% and ~530% faster than the serial rendering on Node1, Node 2

and Node 3, respectively.

 As illustrated in Fig.7 and 8, the total rendering time of the

“bounce.pov” animation is drastically reduced when rendered on the grid:

• The rendering at a resolution of 800 x 600 pixels on the grid is

~232%, ~339% and ~448% faster than the serial rendering on

Node1, Node 2 and Node 3, respectively.

• The rendering at a resolution of 1024 x 768 pixels on the grid is

~253%, ~293%, ~390% faster than the serial execution on Node1,

Node 2 and Node 3, respectively.

• The rendering at a resolution of 1366 x 768 pixels on the grid is

~266%, ~336%, ~427% faster than the serial execution on Node1,

Node 2 and Node 3, respectively.

• The rendering at a resolution of 1600 x 1200 pixels on the grid is

~165%, ~331%, ~381% faster than the serial execution on Node1,

Node 2 and Node 3, respectively.

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 212

Figure 5. Serial image rendering on single nodes

Figure 6. Parallel image rendering on a grid of three nodes

Figure 7. Serial animation rendering on single nodes

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 213

Figure 8. Parallel animation rendering on a grid of three nodes

Conclusion and Future Work

This work presented a grid-enabled implementation of the Ray Tracing

technique on a Windows environment using POV-Ray, .NET Framework

and Alchemi. The technical details and sample source code were included in

order to enable other researchers and practitioners to implement similar

solutions. Moreover, a comparison between the serial and the grid-enabled

implementations of POV-Ray was presented to show how enterprises can

benefit from the proposed technique.

 Results show that the speed of the 3D rendering task of both images

and video frames increases proportionally with the number of the connected

workers. This means that we can render the presented images and animation

frames in a few seconds if we are able to build a grid of 50 or 100

computers. Building such a grid is trivial since most enterprises, including

small ones, usually have more than 50 computers. By achieving a semi-real

time rendering for complex models, enterprises can do more work in much

less time without spending any extra cost.

 It is worth mentioning that the utilization of desktop grids for 3D

rendering is not only limited to ray tracing or POV-Ray. Implementers can

harness the power of grid computing with other 3D graphics and modeling

software like Autodesk Maya, Blender, etc. This can be easily achieved by

creating grid-enabling plug-ins for these products using the provided APIs

and scripting languages, for example [CSL06].

Anale. Seria Informatică. Vol. IX fasc. 2 – 2011

Annals. Computer Science Series. 9th Tome 2nd Fasc. – 2011

 214

 Service-oriented Architecture (SOA) is a set of design and

development methodologies that are being widely adopted by software

implementers to enable an easy and effective integration between different

software systems –both modern and legacy [Has09] [RHH10]. A service is a

well-defined, self-contained software component that encapsulates business

and/or technical functionalities related to a specific domain in an abstract

and reusable manner. We plan to service-enable our implementation so that

developers from different enterprises can make use of it without worrying

about the underlying details and complexities.

Acknowledgment

The authors would like to thank Rana Sherif for her generosity and

continues assistance in editing their work.

References

[CSL06] A. Chong, A. Sourin, K. Levinski - Grid-based Computer

Animation Rendering, Proceedings of the 4th international

conference on Computer graphics and interactive techniques in

Australasia and Southeast Asia, 2006.

[Has09] Q. F. Hassan - Aspects of SOA: An Entry Point for Starters,

Anale. Seria Informatica. Vol. VII fasc. 2 – 2009.

[Hea07] M. Head - SOA grid design patterns for computer graphics

animation: Using Alchemi to render POV-Ray animations on a

grid, 2007, developerWorks, IBM.

[RHH10] A. M. Riad, A. E. Hassan, Q. F. Hassan - Design of SOA-

based Grid Computing with Enterprise Service

Bus, International Journal on Advances in Information Sciences

and Service Sciences, 2010.

[RHH11] A. M. Riad, A. E. Hassan, Q. F. Hassan - On Harnessing

Desktop Grids for Semi-Real Time 3D Rendering: A Case Study

on POV-Ray, Anale. Seria Informatica. Vol. IX fasc. 2 – 2011.

