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ABSTRACT: In this paper, an improved exponential type estimator for estimating the population mean is proposed under 

simple random sampling scheme. The proposed estimator was obtained by combination of conventional product and 

exponential-type ratio estimators with aim of obtaining estimator with higher efficiency. The bias and mean squared error 

(MSE) of the proposed estimator were obtained up to the first order of approximation using binomial and exponential 

expansion techniques and the optimum value of the unknown constant of the estimator was derived by means of partially 

differentiating the mean squared error and equating to zero. Also, the conditions under which the proposed estimator is 

more efficient than the conventional estimators in the literature are established. An empirical study was carried out to 

support the fact that the proposed estimator is better than the existing ones, as the proposed estimator has a minimum mean 

squared error at the optimum value of the unknown constant and has higher percentage relative efficiency (PRE). This 

implies that the proposed estimator is more efficient than the conventional product and exponential-type ratio estimators 

considered in the study. 
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1. INTRODUCTION 

 

The auxiliary information in sampling theory is used 

for improved estimation of parameters enhancing the 

efficiencies of the estimators. The problem of 

estimating the population mean in the presence of 

auxiliary variable has been widely discussed in finite 

population sampling literature. The use of auxiliary 

information is well known to improve the precision 

of the estimate of the population mean and other 

parameters of the study variable in survey sampling. 

Ratio, product and difference methods of estimation 

are good examples in this context. Ratio method of 

estimation is quite effective when there is high 

positive correlation between study and auxiliary 

variables. However, if correlation is negative and 

very high, the product method of estimation can be 

employed effectively. In recent years, a number of 

research papers on ratio type, exponential ratio type 

and regression type estimators have appeared, based 

on different types of transformations (see Bahl and 

Tuteja [6], Murthy [3], Sisodia and Dwivedi [1], 

Singh et al [9], Singh and Tailor [5], Singh et al. [8], 

Yadav and Kadilar [4], Kadilar and Cingi [10], 

Singh HP et al. [11], Sahai A et al. [12], Srivastava 

SK et al. [13], Ahmed A et al. [14], Audu A et al. 

[15], Audu A et al. [16], Muili JO et al. [17], Singh 

HP et al. [18], Sisodia BVS et al. [19], 

Khoshnevisan M et al. [20], Singh and Audu [21], 

Ahmed A et al.[22] and Audu A et al.[23], Das AK 

et al. [24], Das AK et al. [25], Patel PA et al. [26], 

Rajyaguru A et al. [27], Rajyaguru A et al. [28], 

Archana V et al. [29], Singh R et al. [30], Audu A. et 

al. ([31]-[36], [38]), Singh R. [37], Muili J. O. [39], 

Ishaq O. O. [40]).  

In the present study, we proposed an improved 

exponential type estimator for estimating the 

population mean of the study variable Y that is more 

efficient than the existing conventional product and 

exponential-type ratio estimators.  

 

2. EXISTING ESTIMATORS IN LITERATURE  

 

Consider a finite population U= U1, U2, …., UN of N 

units. Let Y and X denote the variable under study 

and auxiliary variable respectively. Let (yi, xi), i=1, 

2, 3, …., n denote the n pair of sample observations 

for the study and auxiliary variables, respectively, 

drawn from the population size N using simple 

random sampling without replacement (SRSWOR). 

Let X and Y be the population means of auxiliary 

and study variables, respectively, and let x and y  

be the respective sample means. 

The usual sample mean estimator is defined as: 

 
1

1

n

i

i

y n y−

=

=    (2.1) 
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The associated bias and variance of the sample mean 

estimator are given by: 

 ( ) 0Bias y =   (2.2) 

 
2 2( ) yVar y Y C=   (2.3) 

Where ( ) ( )
1

1 1 2 2 21 , , ,y yn f f n N C S Y
−

− −= − = =

and 
2

yS  is the variance of the study variable. 

Cochran [2] defined ratio estimators as 

 R

yX
y

x
=   (2.4) 

The associated bias and mean squared error of the 

ratio estimator are given by: 

( )2( )R x y xBias y Y C C C = −   (2.5) 

2 2 2( ) ( 2 )R y x y xMSE y Y C C C C = + −   (2.6) 

Where  

𝛾 = 𝑛−1(1 − 𝑓), 𝑓 = 𝑛−1𝑁, 𝐶𝑦
2 = 𝑆𝑦

2(�̄�2)−1, 𝐶𝑥
2 =

𝑆𝑥
2(�̄�2)−1, and  
2 2, ,y xS S  are the variance of the study and auxiliary 

variables.   is the correlation coefficient. 

Murthy [3] defined conventional product estimator 

as: 

 
P

yx
y

X
=   (2.7) 

The associated bias and mean squared error of the 

product estimator are given gy: 

 ( )P y xBias y Y C C =   (2.8) 

2 2 2( ) ( 2 )P y x y xMSE y Y C C C C = + +   (2.9) 

Where  

𝛾 = 𝑛−1(1 − 𝑓), 𝑓 = 𝑛−1𝑁, 𝐶𝑦
2 = 𝑆𝑦

2(�̄�2)−1, 𝐶𝑥
2 =

𝑆𝑥
2(�̄�2)−1, and  
2 2, ,y xS S  are the variance of the study and auxiliary 

variables.   is the correlation coefficient. 

Bahl and Tuteja [6] proposed an exponential ratio 

and product type estimator for the population mean 

as: 

1 expBTratio

X x
t y y

X x

  −
= =  

 + 
   (2.10) 

2 expBTproduct

x X
t y y

X x

 −
= =  

 + 
   (2.11) 

The associated biases and mean squared errors of the 

estimators are given by: 
2

1

3
( )

8 2

y xx
C CC

Bias t Y



 

= − 
 

  (2.12) 

2

2( )
2 8

y x x
C C C

Bias t Y



 

= − 
 

  (2.13) 

2
2 2

1( )
4

x
y y x

C
MSE t Y C C C 

 
= + − 

 
  (2.14) 

2
2 2

2( )
4

x
y y x

C
MSE t Y C C C 

 
= + + 

 
   (2.15) 

Where  

𝛾 = 𝑛−1(1 − 𝑓), 𝑓 = 𝑛−1𝑁, 𝐶𝑦
2 = 𝑆𝑦

2(�̄�2)−1, 𝐶𝑥
2 =

𝑆𝑥
2(�̄�2)−1, and  
2 2, ,y xS S  are the variance of the study and auxiliary 

variables.   is the correlation coefficient. 

 

3.  MATERIALS AND METHODS 

 

3.1 Proposed estimator 

 

Following Murthy [3] and Bahl and Tuteja [6], an 

improved exponential estimator for estimating the 

population mean Y is proposed and defined as: 

12 expM

x X x
T y

X X x



−
  − 

= +    
+     

   (3.1) 

To derive the bias and mean squared error (MSE) of 

the proposed estimator MT , the following properties 

are defined: 

0 1, ,
y Y x X

e e
Y X

− −
= Then the two relations can 

also be written as:  ( ) ( )0 11 , 1y Y e x X e= + = +

such that ( ) ( )0 1 0E e E e= =  and

( ) ( ) ( )2 2 2 2

0 1 0 1, ,y x y xE e C E e C E e e C C  = = = . 

In calculus, the expansion of 
xe  or exp(x) is defined 

as: 

𝑒𝑥𝑝( 𝑥) = 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+

𝑥4

24
+

𝑥5

120
+⋯ (3.2) 

 

Using (3.2) in (3.1), requires approximation to 

power two, then equation (3.1.2) reduces to: 
2

exp( ) 1
2

x
x x= + +    (3.3) 

Also, from calculus, the binomial expansion for 

negative and fractional power is defined as: 

(1 + 𝑥)𝑛 = 1 + 𝑛𝑥 +
𝑛(𝑛−1)

2
𝑥2 +

𝑛(𝑛−1)(𝑛−2)

6
𝑥3 +⋯

 (3.4) 

Using (3.4) in (3.1), requires approximation to 

power two, then equation (3.4) reduces to: 

( ) 2
1

(1 ) 1
2

n
n n

x nx x
−

+ = + +    (3.5) 

Substituting for y and x  using the properties 

defined above, (3.1) becomes: 
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𝑇𝑀 = 2−1�̄�(1 + 𝑒0) [(
�̄�(1+𝑒1)

�̄�
)
𝛼

+ 𝑒𝑥𝑝 [
�̄�−�̄�(1+𝑒1)

�̄�+�̄�(1+𝑒1)
]] 

 (3.6) 

 

Simplifying equation (3.6) gives: 

𝑇𝑀 = 2−1�̄�(1 + 𝑒0) [(1 + 𝑒1)
𝛼 + 𝑒𝑥𝑝 [

−�̄�𝑒1

2�̄�+�̄�𝑒
]] 

 (3.7) 

𝑇𝑀 = 2−1�̄�(1 + 𝑒0) [(1 + 𝑒1)
𝛼 + 𝑒𝑥𝑝 [

−𝑒1

2
(1 +

𝑒1

2
)
−1
]]  (3.8) 

 

Using equation (3.1.3) in equation (3.1.8) gives: 

𝑇𝑀 = 2−1�̄�(1 + 𝑒0) [(1 + 𝛼𝑒1 +
𝛼(𝛼−1)

2
) +

𝑒𝑥𝑝 [
−𝑒1

2
(1 −

𝑒1

2
+

𝑒1
2

4
)]]  (3.9) 

 

Expanding the second term in the parenthesis to 

second degree, this gives: 

𝑇𝑀 = 2−1�̄�(1 + 𝑒0) [(1 + 𝛼𝑒1 +
𝛼(𝛼−1)

2
) +

𝑒𝑥𝑝 [
−𝑒1

2
+

𝑒1
2

4
]]  (3.10) 

 

Using equation (3.5) in equation (3.10), leaving the 

expansion to second degree, gives: 

𝑇𝑀 = 2−1�̄�(1 + 𝑒0) [(1 + 𝛼𝑒1 +
𝛼(𝛼−1)

2
𝑒1
2) +

(1 −
𝑒1

2
+

3𝑒1
2

8
)]  (3.11) 

𝑇𝑀 = �̄�(1 + 𝑒0) [1 + (
𝛼

2
−

1

4
) 𝑒1 + (

𝛼(𝛼−1)

4
+

3

16
) 𝑒1

2]  (3.12) 

 

Expanding equation (3.12) up to second degree of 

approximation, gives: 

𝑇𝑀 = �̄� + �̄� [(
𝛼

2
−

1

4
) 𝑒1 + (

𝛼(𝛼−1)

4
+

3

16
) 𝑒1

2 + 𝑒0 +

(
𝛼

2
−

1

4
) 𝑒0𝑒1]  (3.13) 

 

Subtract Y and take expectation on both sides of 

equation (3.13) to obtain the bias of the proposed 

estimator as: 

𝐸(𝑇𝑀 − �̄�) = �̄� [(
𝛼

2
−

1

4
)𝐸(𝑒1) + (

𝛼(𝛼−1)

4
+

3

16
)𝐸(𝑒1

2) + 𝐸(𝑒0) + (
𝛼

2
−

1

4
)𝐸(𝑒0𝑒1)]  (3.14) 

𝐵𝑖𝑎𝑠(𝑇𝑀) = �̄�𝛾 [(
𝛼(𝛼−1)

4
+

3

16
)𝐶𝑥

2 + (
𝛼

2
−

1

4
) 𝜌𝐶𝑦𝐶𝑥]  (3.15) 

 

To obtain the mean squared error (MSE) of the 

proposed estimator, it is defined as: 

( ) ( )
2

M MMSE T E T Y= −   (3.16) 

Substituting equation (3.13) in equation (3.16) to 

first order of approximation, gives: 

( )
2

2

1 0

1

2 4
MMSE T Y E e e

  
= − +  

  
  (3.17) 

Expanding and taking expectation gives the mean 

squared error (MSE) of the proposed estimator to 

first order of approximation as: 

𝑀𝑆𝐸(𝑇𝑀) = �̄�2𝛾 (𝐶𝑦
2 + (

𝛼

2
−

1

4
)
2
𝐶𝑥
2 +

2(
𝛼

2
−

1

4
)𝜌𝐶𝑦𝐶𝑥)  (3.18) 

 

Differentiating equation (3.18) partially with respect 

to  and equate to zero to obtain the optimum value 

of  as: 

 
21

2

yopt

x

C

C


 = −  

Substituting the optimum value of  into equation 

(3.18), to obtain the minimum MSE of the proposed 

estimator MT as: 

 

( ) ( )2 2 2

min
1M yMSE T Y C = −   (3.19) 

 

It follows from equation (3.19) that the proposed 

estimator MT at its optimum condition is as efficient 

as that of the usual linear regression estimator. 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 Efficiency comparisons 

In this section, the MSE of the conventional 

estimators 1 2, , , ,R Py y y t t  are compared with the 

MSE of the proposed estimator MT . From equations 

(2.3), (2.6), (2.8), (2.14), (2.15), and (3.19) 

 

( ) ( ) 2 2 2

min
[ ] 0M yVar y MSE T Y C − =    (4.1) 

( ) ( ) ( )
2

2 2

min
[ ] 0R M x yMSE y MSE T Y C C − = −   

 (4.2) 

( ) ( ) ( )
2

2 2

min
[ ] 0P M x yMSE y MSE T Y C C − = +   

  (4.3) 

( ) ( )
2

2
2

1 min
[ ] 0

2

x
M y

C
MSE t MSE T Y C 

 
− = −  

 

 (4.4) 

( ) ( )
2

2
2

2 min
[ ] 0

2

x
M y

C
MSE t MSE T Y C 

 
− = +  

 

 

 (4.5) 

 

It is observed that MT  is always efficient than the 

conventional estimators 1 2, , , ,R Py y y t t , because the 

condition from (4.1) to (4.5) are always satisfied. 
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4.2 Empirical study 

The appropriateness of the proposed estimator has 

been verified with the help of the following data sets 

in table 1. 

 

Table 1. Statistics of Population 

Parameters 
Population 1 

(Cochran [7]) 

Population 2 

(Murthy [41]) 

N 10 80 

N 4 20 

Y  5.920 11.264 

X  3.590 51.826 
  0.680 0.941 

yC  0.144 0.750 

xC  0.128 0.354 

( )2 x
  0.381 0.063 

 

The explanation of the data sets in table 1 from 

sources is given as follows: 

 

Population 1: Source, Cochran [7]: The auxiliary 

variable X is the number of rooms and the study 

variable Y is the number of persons. 

Population 2: Source, Murthy [41]: The auxiliary 

variable X is the output of the 80 factories and the 

study variable is the fixed capital. 

The percentage relative efficiency is computed as: 

( )
( )

( )
i

i

Var y
PRE G

MSE G
=  for 1, 2,3, 4,5,6i =  and 

1 2 3 4 1 5 2 6, , , , ,R P MG y G y G y G t G t G T= = = = = =  

 

The mean squared errors (MSEs) and percentage 

relative efficiencies (PREs) of the different 

estimators of the population mean with respect to the 

sample mean based on populations 1 and 2 are given 

in table 2. 

 
Table 2. MSEs and PREs of Proposed and 

Conventional estimators for population 1 and 2  

Estimators 
MSE 

popn.1 

PRE 

popn.1 

MSE 

popn.2 

PRE 

popn.2 

y  12.6366 100 26.7633 100 

Ry  1.7874 157.5875 8.9518 298.9715 

Py  54.4632 33.9480 56.4996 47.3689 

1t  1.6172 161.3546 16.3669 163.5205 

2t  52.0376 56.3282 40.1408 66.6734 

MT  

(proposed) 
1.4399 173.1528 3.0649 873.2175 

 

Table 2 shows the numerical results of (MSE and 

PRE) of 1 2, , , , ,R P My y y t t T  estimators using 

population sets 1 and 2. Of all the estimators 

considered in the study, the proposed estimator has 

minimum MSE and maximum PRE for the 

population sets. This implies that yhe proposed 

estimator demonstrates high level of efficiency over 

others and can produce better estimate of the 

population mean. 

 
5. CONCLUSIONS 

 

From the results of the empirical study, it was 

obtained that the proposed estimator is more 

efficient than other estimators considered in the 

study and therefore, it is recommended for use for 

estimating the population mean in practice. 
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