Anale. Seria Informatica. Vol. X fasc. 1 —2012 929

Annals. Computer Science Series. 10™ Tome 1 Fasc. — 2012

ON THE ROBUSTNESS OF K-SORT AND ITS COMPARISON
TO QUICK SORT IN AVERAGE CASE

Mita Pal and Soubhik Chakraborty

Department of Applied mathematics, B.I.T, Mesra, Ranchi-835215, India

ABSTRACT: The present paper examines the robustness
of the average case O (nlogn) complexity on K-sort, a
new version of quick sort. In our first study we
reconfirm this through computer experiments. A
computer experiment is a series of runs of a code for
various inputs. A deterministic computer experiment is
one which produces identical results if the code is re-run
for identical inputs. Our second study reveals that K-sort
is the better choice for discrete uniform distribution U(1,
2, ..., k) inputs whereas quick sort is found better for
continuous uniform distribution U(0,1) inputs.
Interestingly, increasing k which decreases the ties is
good for quick sort but bad for K-sort.

KEYWORDS: Cauchy distribution, Computer
experiment, K-Sort, Robustness, average complexity

1.INTRODUCTION

In our previous work [S+11a], we introduced K-
sort, a modified version of quick sort that removes
the interchanges, and found it to be having a more
robust average case O(nlogn) complexity for
negative binomial inputs. In this paper, we
reconfirm this through computer experiments for
inputs from Cauchy distribution for which
expectation theoretically does mnot exist. The
reconfirmation is crucial as some recent studies
show that average case complexity derived for
uniform inputs need not necessarily hold for non
uniform inputs (see for example [CS07a] and
[SC08]) or that expectation is applied to an
operation that appears to be dominant but is not so
(e.g. comparisons, and not multiplication, is
dominant in Schoor’s matrix multiplication
algorithm [CSO7b]). When in doubt as to which
operation or which region in the code is dominant
(this is difficult to predict for a complex code), one
suggestion could be replacing the count based
mathematical bound (which is also unfortunately
operation specific) by a weight based statistical
bound that a permits collective consideration of all
operations and then estimate it by directly working
on time, regarding the time consumed by an
operation as its weight. In other words, the
credibility of this statistical bound estimate (called
empirical O) depends on the design and analysis of
our computer experiment. A computer experiment
is a series of runs of a code for various inputs. A

deterministic computer experiment is one which
produces identical results if the code is re-run for
identical inputs[S+89]. A recent book on computer
experiments with complexity as the response
variable is [CS10]. For a comprehensive account on
sorting and searching algorithms, see [Knu00]. For
sorting with special emphasis on the input
probability distribution, see [Mah00].

In the present work, a comparison is made of
average time between two algorithms, quick sort
and K-sort, on the discrete uniform distribution
U(1, 2, ..., k) with probability 1/k for each variates’
value and continuous uniform distribution U(0,1)
inputs. The experimental results exhibit that the K-
sort has an edge over quick sort for discrete uniform
distribution inputs. However, for continuous
uniform distribution inputs it is the quick sort which
performs better.

2. ALGORITHM

The steps of K-sort [S+11a], [S+11b] are given
below:-

Step-1: Initialize the first element of the array as the
key element and i as left, j as (right+1), k = p where
p is (left+1).

Step-2: Repeat step-3 till the condition (j-i) > 2 is
satisfied.

Step-3: Compare a[p] and key element. If key <
a[p] then

Step-3.1: if (p is not equal to j and j is not equal to
(right+ 1))

then set a[j] = a[p]

else if (j equals (right + 1)) then

set temp = a[p] and flag = 1

decrease j by 1 and assign p =j

else (if the comparison of step-3 is not satisfied i.e.
ifkey > alp])

Step-3.2: assign a[i] = a[p] , increase i and k by 1
and setp =k

Step-4: set a[i] = key

if (flag == 1) then

assign a[i+1] = temp

Step-5: if (left < i - 1) then Split the array into sub
array from start to i-th element and repeat steps 1-4

100 Anale. Seria Informatica. Vol. X fasc. 1 —2012

Annals. Computer Science Series. 10™ Tome 1 Fasc. — 2012

with the sub array

Step-6: if (left > i+ 1) then

Split the array into sub array from i-th element to
end element and repeat steps 1-4 with the sub array

3. EMPIRICAL RESULTS

First of all we would focus on reconfirming the
robustness of average complexity of K-sort. Next
we examine the behavior of K-sort when inputs
come from discrete uniform distribution U(1, 2, ...,
k) and continuous uniform distribution (0,1) and
compare the same with quick sort.

3.1. Reconfirming the robustness of average
complexity of K-sort

Theorem 1: If U, and U, are two independent
uniform U [0, 1] variates then Z; and Z, defined
below are two independent Standard Normal
variates:

Z,= (-2InU;)"? Cos(2:1U>)
Z,= (-2InU;)"? Sin(2:1U,)

This result is called Box Muller transformation.

Theorem 2: If Z, and Z, are two independent
standard Normal variates then Z, / Z, is a standard
Cauchy variate. For more details, we refer to
[KG80]. We all know that for Cauchy distribution,
expectation does not exist theoretically [GKO2].
Hence it is not possible to know the average case
complexity theoretically for inputs from this
distribution. Working directly on time, using
computer experiments, we have obtained an
empirical O (nlogn) complexity in average sorting
time for K-sort for Cauchy distribution inputs
which we simulated using theorems 1 and 2 given
above. This result goes a long way in reconfirming
that K-sort’s average complexity is robust unlike
quick sort [SCOS8]. It is of interest to note that K-
sort beats Heap Sort for n < 70 lakhs [S+11a] and it
is easier to program K-sort as compared to heap
sort. As a final comment, we strongly insist that for
those algorithms which have bad worst case but
better average case, the robustness of the average
case must be tested because average case under
universal distribution equals worst case [MV92].
Table 1 and Fig 1 based on table 1 summarize our
results.

Table 1: Average time for K-sort for Cauchy
distribution inputs (average taken over 500 trials)

n nlogn Average time (Sec)
3000 10431.36 0.006
6000 22668.91 0.016
9000 35588.18 0.047
12000 48950.17 0.069
15000 62641.37 0.109
18000 7659491 0.145
21000 90766.61 0.188
24000 105125.1 0.235
27000 119646.8 0.297
30000 134313.6 0.355

nlogn versus average time for cauchy

distribution input y = 3E-06x - 0.053
0.35 4 R?*=0.976
o
2 03
=
= 0.25
g
= 02
&
£ 0.15 - == Avg time for K-
@ sort
4 01- — Linear {Avg time
for K-sort)
0.05
0
0 50000 pjggp 100000 150000
Fig 1: Average complexity supporting O(nlogn)
complexity

3.2. Comparison between quick sort and K-sort
for discrete uniform distribution U(1, 2, ..., k)
and continuous uniform distribution U(0,1)

A computer experiment is a series of runs of a code
for wvarious inputs. By running computer
experiments on Borland International Turbo ’C++’
ver 5.02, we could compare the average sorting
time in seconds (average taken over 500 readings)
for different values of n for both K-sort and quick
sort. Using Monte Carlo simulation [KGS80], the
array of size n was filled with independent discrete
uniform distribution U(1, 2, ..., k) in phase one of
the second study and also continuous uniform
UJ[0,1] variates in phase two and the elements are
copied to another array. One array is sorted by K-
sort while the other is sorted by quick sort. Table 2,
Table 3, Table 4 and Fig. 2, Fig 3, Fig 4 give the
empirical results respectively.

Anale. Seria Informatica. Vol. X fasc. 1 —2012 101

Annals. Computer Science Series. 10™ Tome 1 Fasc. — 2012

Table 2: Average time for quick sort and K-sort on
discrete uniform distribution for fixed k=1000 and
various value of n

Table 4: Average time for quick sort and K-sort on
continuous uniform distribution for varying n

n Average time for | Average time
quick sort (Sec) | for K-sort (Sec)
50000 0.058 0.0155
100000 0.184 0.025
500000 3.955 0.422
1000000 15.364 1.574

Table 3: Average time for quick sort and K-sort on
discrete uniform distribution U(1, 2, ..., k) for fixed
n=100000 and various value of k

n Average time for | Average time
quick sort (Sec) | for K-sort (Sec)
100000 0.0154 0.154
500000 0.075 0.081
1000000 0.156 0.187
2500000 0.519 0.656
5000000 1.515 1.916
7500000 2.963 3.812
10000000 4.87 6.348

n Average time for | Average time
quick sort (Sec) | for K-sort (Sec)
5000 0.068 0.016
10000 0.053 0.025
20000 0.047 0.0306
30000 0.047 0.031

Average time for quik sort and K-sort
on discrete uniform distribution
inputs for k=1000 and n vary

N
(=]

[
v
I

Average time in sec
n =

0 -
0

_

—&#—Avgtime for
quick sort
—l—Avg time for K-

sort

500000
Array size(n)

1000000

1500000

Fig 2: Comparison of average time of quick sort and
K-sort on discrete uniform distribution for k=1000

and varying n

Average time for quik sort and K-sort
on discrete uniform distribution inputs
08 1 forn=100000 and k vary

0.07 -

e ©

o o

[
. !

e 2

o o

@ B
. .

Average time in sec
o
o
[

e

o

=
.

—+—Avgtime for
quick sort

== Avg time for K-

sort

o

0

10000 20000
k

30000

40000

Fig 3: Comparison of average time of quick sort and
K-sort on discrete uniform distribution for n=100000
and varying k

Average time for quik sort and K-sort
on continuous uniform distribution

7
inputs for vagiousn

6
)
&
= 5
-
24
=
@3
2P —o— Avgtime for
i) quick sort
-
-1 —f— Avg time for K-

1 sort

0

0 5000000 10000000 15000000

Array size(n)
Fig 4: Comparison of average time of quick sort and
K-sort on continuous uniform distribution for
varying n

3. DISCUSSION

From Fig 1, it is clear that K-sort supports O
(nlogn) average complexity for Cauchy distribution
inputs like quick sort. Although K-sort is faster than
heap sort up to n < 70 lakhs and both algorithms
have average O(nlogyn) complexity [S+11a], it is
not easy to calculate the average time for higher
value of n where data comes from Cauchy
distribution because two independent standard
normal variates are divided in the case of Cauchy
distribution (theorem 2). The program failed to run
and division by zero error is shown by the computer
frequently.

From a moment’s reflection from Table 2 and Fig
2, it is clear that K-sort is faster than quick sort for
discrete uniform distribution inputs for various
value of n and fixed k Table 3 and Fig 3 show that
the average sorting time for quick sort is decreased
for discrete uniform distribution inputs when k
increases (possibly because increasing k amounts to
a less ties). But the average sorting time for K-sort
is increased for discrete uniform distribution inputs
when k increases. This is because K sort is so
designed that more ties means more computations
[S+11b]. Table 4 and Fig 4 suggest that K-sort is

102 Anale. Seria Informatica. Vol. X fasc. 1 —2012

Annals. Computer Science Series. 10™ Tome 1 Fasc. — 2012

inferior to quick sort for continuous uniform
distribution inputs, although the robustness of K-
sort remained unchallenged.

4. CONCLUSION AND FUTURE WORK

The empirical results confirm the average case O
(nlogn) complexity for K-sort. It is important to
mention here that the quick sort O(nlogn)
complexity has been recently challenged for non-
uniform inputs [SC08]. K sort is only a variation of
Quick sort which removes the interchanges. So it
was important to verify the robustness, given that it
is also faster than heap sort for input size up to 70
lakhs. In the bargain, we have exposed the
acknowledged problem of the probability
distribution over which expectation is taken not
being realistic over the problem domain as in the
case of quick sort. The experimental results exhibit
that K- sort has an edge over quick sort for discrete
uniform distribution inputs although inferior to
quick sort for continuous uniform distribution
inputs. Future work involves studies on
parameterized complexity on K-sort.

REFERENCES
[CS07a] S. Chakraborty, S. K. Sourabh -
How robust are average complexity
measures? A statistical case study.
Applied Mathematics and

Computation 189 (2): 1787-1797
(2007)

[CSO7b] S. Chakraborty, S. K. Sourabh - On
why an algorithmic time complexity
measure can be system invariant
rather than system independent.
Applied Mathematics and

Computation 190(1): 195-204 (2007)

[CS10] S. Chakraborty, S. K. Sourabh - 4
Computer Experiment Oriented
Approach to Algorithmic Complexity,
Lambert Academic Publishing, 2010
[GKO02] S. C. Gupta, V. K. Kapoor -
Fundamentals of Mathematical
Statistics, Sultan Chand and Sons, 11"
revised edition, June 2002.

[Knu00] D. E. Knuth - The Art of Computer
Programming, sorting and searching,
vol. 3, Addison Wesely (Pearson
Education Reprint), 2000.

[KGS80] W. Kennedy, J. Gentle - Statistical

[Mah00]

[MV92]

[SCO8]

[S+11a]

[S+11b]

[S+89]

Computing, Marcel Dekker Inc.,1980.

H. Mahmoud - Sorting: A
Distribution Theory, John Wiley and
Sons, 2000.

M. Li, P. M. B. Vitanyi - Average
case complexity under the universal
distribution equals worst case
complexity, Inf. Proc. Lett., 42, no. 3,
145-149, 1992.

S. K. Sourabh, S.Chakraborty - How
robust is quick sort average
complexity? arXiv:0811.4376v1
[cs.DS]

K. K. Sundararajan, M. Pal, S.
Chakraborty, N. C. Mahanti - K-
sort: A new sorting algorithm that
beats Heap sort for n < 70 lakhs!,
arXiv:1107.3622v1 [cs.DS]

K. K. Sundararajan, M. Pal, S.
Chakraborty, B. Pal, N. C. Mahanti
- K-Sort Revisited for Negative
Binomial Inputs, Algorithms Research;
1(1): 1-4,2011.

J. Sacks, W. Weltch, T. Mitchel, H.
Wynn - Design and Analysis of
Computer Experiments, Statistical
Science Vol.4 (4), (1989)

