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ABSTRACT: The aim of the present paper is to use the 

first order mathematical derivative to explain the return 

trajectory of an object, in our particular case it is about a 

spaceship belonging to NASA Apollo 13 Space Program. 

Firstly, the mission overview is presented followed by the 

mathematical modelling pertaining to this case study. We 

focus on the events that could follow an unforeseen 

accident. More precisely, we take into consideration three 

types of the return trajectory that the spaceship could have 

followed:  a ricochet in outer space, crashing on the 

Earth’s surface and safe landing on Earth. The numerical 

simulations are done using GeoGebra software. Finally, 
conclusions are drawn. 

KEYWORDS: first order derivative, mathematical 

modelling, applications, object trajectory, numerical 

simulations. 

 

1. INTRODUCTION  
 

Mathematical modelling is an important tool used to 

describe, analyze and predict complex natural 

phenomenon and processes. Therefore, the 
evironment can be simplified, emulated and 

understood in an efficient way. Based on ([MG14]), 

[MSC07]), many countries apply the approach of 
modelling in teaching and learning processes.  

In the teaching process it is important to help pupils 

to discover and apply knowledge flexibly for 

studying more effectively ([Tinh17]). Nowdays, the 
trends in education highlight the strong connection 

between mathematical knowledge and the real world 

applications ([CQ17]). 
In the present paper, we use the mathematical 

derivative of the first order to model, explain and 

describe the return trajectory of a spaceship.  
In an attempt to set foot on the Moon again, NASA 

embarked on a new space mission named Apollo 13. 

An unfortunate accident took place on the way to the 

Moon that changed completely the entire flight plan 
and scope of the mission. During the attempt to stir 

the oxygen tanks an explosion occurred that put in 

danger the human crew of Apollo 13. Following this 
accident there were three types of the return 

trajectory that the spaceship could follow:  a ricochet 

in outer space, crashing on the Earth’s surface and 
safe landing on Earth. These orbits of the spaceshift 

can be interpretated using the mathematical 

modelling. 

The structure of the paper is as follows. Section 2 

describes Apollo 13 mission overview. Throughtout 
Section 3 the mathematical modelling pertaining to 

the case study is addressed. GeoGebra software is 

used to illustrate numerical simulations. Finally, 
conclusions are drawn and presented in Section 4. 

 

2. APOLLO 13 MISSION  

 
Apollo 13 was the seventh mission in the Apollo 

space program and the third intended to land on the 

Moon. The craft was launched on April 11, 1970, at 
14:13 EST (19:13 UTC) from the Kennedy Space 

Center, Florida, but the lunar landing was aborted 

after an oxygen tank exploded two days later. 
A lot of problems were caused by limited power, 

like loss of cabin heat, shortage of potable water, 

and the critical need to repair the carbon dioxide 

removal system. After the explosion, they were 
faced with two dangerous options for the return 

trajectory to Earth: one being to turn around 

immediately and the other one was to continue they 
journey toward the Moon using its gravity to put 

them on return trajectory to Earth. They took the 

decision not to turn around immediately, but to use 
the Moon gravity. They shut down all the electrical 

power consuming systems (including the guiding 

system) with the exception of the communication 

system. 
On their journey back in one point in time they had 

to manually orient the spaceship on the right 

trajectory that gave them the optimal gravitational 
force for a safe landing on Earth.There are three 

possibilities: 

1. Low gravitational force will result into a 

ricochet in outer space. The spaceship and 
its crew will be lost in space (see Fig. 1).  

2. High gravitational force will result into a 

descending speed that generates heat above 
the heat shield resistance limit. The 

spaceship will melt because of excessive 

heat generated due to the friction with the 
atmosphere (see Fig. 2). 
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3. Optimal gravitational force will result into a 

descending speed that generates heat below 
the heat shield resistance limit. This option 

is the safe one (see Fig 3). 

 

 
Fig. 1. Low gravitational force leads to a ricochet in 

outer space 

 

 
Fig. 2. High gravitational force leads to the distruction 

of the spaceship 

 

 
Fig. 3. Optimal gravitational force leads to a safe 

landing of the spaceship 
 

Optimal gravitational force was obtained having a 

flight path defined by the right Earth orbit tangent. 

In mathematical terms the equation of the tangent is 

based on the first degree of a derivative function. 
The crew returned safely to Earth on April 17, 1970, 

six days after launch. 

 

3. MATHEMATICAL APPROACH 

 

3.1. General considerations 

 

For guiding an object on a trajectory to intersect a 
given point in space one option is to use the 

mathematical derivative of a real function. The 

derivative is a way to show rate of change: that is, 
the amount by which a function is changing at one 

given point. For functions that act on the real 

numbers, it is the slope of the tangent line at a point 

on a graph. 

Let RD:f  be a real function, where D is an 

interval or an union of intervals within R. 

Definition 1 ([Gan97]). We say that function f 

admits a derivative in Dx0  if the limit  
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Definition 2 ([Gan97]). Function f is said to be 

differentiable at Dx0  if the limit  
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exists in R (exists and it is finite). In this case the 

limit is denoted by )x(f 0
 meaning 
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Observation 1 ([Gan97]) If function f admits a 

finite derivative in Dx0  , then it can be interpreted 

as the slope of the tangent line at ))x(f,x(A 00 on 

the graph of the function f. In this case the equation 

of the tangent is given by: 
 

).xx)(x(f)x(fy 000   
 

Observation 2 ([Gan97]) If the derivative of 
function f is infinity the equation of the tangent is 

given by: 
 

.xx 0  
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3.2. Numerical examples 

 
We suppose the equation of the Earth's atmospheric 

shape is given by the function 

 

f:[-5,5]->R, 
3

x
7)x(f

2

 .  

 

Based on the above function, in what follows, using 

GeoGebra we want to visualize three cases of the 

spaceship’s trajectory, where the gravitational force 
is  low, high and optimal, respectively. 

Let us have the spaceship’s position defined by S 

having the coordinates as ).5,5(  

In the first the case we do not have a safe landing 

due to a low gravitational force that will result into a 
ricochet in outer space of the spaceship. The 

trajectory of the spaceship will intersect the point 

with the coordinates A=(-4,2) and the equation is 

given by:  
 

x-3y+10=0. 
 

In the second case, we do not have a safe landing 

due to high gravitational force that will result into a 
descending speed that generates heat above the heat 

shield resistance limit.  

The trajectory of the spaceship will intersect the 
point with the coordinates A=(-2, 1) and the 

equation is given by:  

 

4x-7y+15=0. 
 
In the third case, in order to assure a safe landing the 

option is to follow a trajectory which is tangent to 

Earth’s atmosphere.  If we choose to reach the point 
with the coordinates A=(-2.5, 2.2), the equation of 

the tangent of f at the point A is given by: 

 

)5.2x)(5.2(f)5.2(fy 

 
 

or equivalently 

 
.16.3x38.0y 

  

 
Fig. 4. Outerspace trajectory 
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Fig. 5. Crash trajectory 

 

 
Fig. 6. Optimal trajectory 

 

CONCLUSIONS 

 
Nowdays, in the educational process it is of paramount 

importance the link between the theoretical concepts 

and the real life situations.  In the present paper, the 

mathematical modelling that was used to describe and 
analyze the trajectory of an object, in close connection 

with a real life case, was based on the geometrial 

interpretation of the first order derivative for a real 

function with a single real variable.  

The case study is related to the trajectory of the 
spaceship beloging to NASA Apollo 13 Space 

Program, after unplanned accident occurred. We 

analyzed three possible return trajectories that the 

spaceship could have followed:  a ricochet in outer 
space, crashing on the Earth’s surface and safe 

landing on Earth. In order to visualize them the 

GeoGebra software is used.  
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