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ABSTRACT: This research considers Polynomial Poisson regression models with orders two and three in one variable for 

design optimization using constrained design space [0, 1]. The D-optimality criterion is explicitly examined in this study. 

Imperialist competitive algorithmic procedure was used to generate the optimal design points and weights. The quadratic 

Poisson regression model was found to be D-optimal at 3-design points: 0.0000, 0.4142 and 1.0000 with design weights 

0.3333, 0.3333 and 0.3333 respectively. The cubic Poisson regression model was optimal at 4-design points 0.0000, 

0.2204, 0.6596 and 1.0000, each with design weights of 0.25. The constructed D-optimal designs were verified using the 

general equivalence theorem via the maximum sensitivity function of each model. 
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1. INTRODUCTION 

 

Optimal designs depict the presence of highly 

efficient designs in relation to some statistical 

criteria. Classification of optimal designs is 

systematically conceptualized from design 

efficiency through available information. 

Improvement in statistical power and precise 

estimation of model parameters are aided by optimal 

designs through minimization of the variances of 

estimators [9]. 

Generation of G-optimum designs for a polynomial 

of order six in one variable serves as a foundational 

study on design optimization [10].  

D-optimal designs were comparatively constructed 

by [11] via the determinant of Fisher information 

matrix.  

Construction of D-optimal designs from a model 

involving variables of first-order term was 

considered by [2] and biases were evaded from the 

omission of higher-order terms through design 

rotation.  

Smith’s findings on G-optimum designs pertaining 

to polynomial model in one variable were 

generalized and the support points were the roots of 

the Legendre polynomial [7].   

Demonstration of non-linear models with Chemical 

kinetics for the generation of locally D-optimum 

designs was illustrated by [3]. 

Exact D-optimal designs of experiments involving 

nonlinear regression models through the 

minimization of determinant of approximate 

variance-covariance matrix of the estimates of 

parameters can be obtained. The intrinsic and 

nonlinearity in the parameter-effects accounts for the 

inability of the determinant in giving a correct 

suggestion about the size of combined inferential 

region for the parameters. Investigations of 

experimental designs that aid the minimization of 

second-order volume approximations were 

examined and the dependence of the investigated 

designs on the noise, confidence levels and 

parameterization used were also evaluated. When 

sequential procedure is employed, the quadratic 

designs are dependent on the residuals from previous 

experiments and on the kind of inference [8]. 

Linear models involving a discrete factor and some 

continuous factors were studied by [12]. A 

considerable optimal design problem was facilitated 

through the imposition of restriction of equal 

regression design measure on all treatment levels. 

The development of a basically complete class as 

regards D-optimality for inference on the treatment 

effects, the regression parameters, and the combined 

parameter vector by the product designs was 

presented. Characterizations of optimal designs in 

terms of optimality for pure regression settings were 

produced using the theorems.  

Regression models involving low-degree polynomial 

terms using the theoretical approach of canonical 

moments produce D-optimal designs. When the 

number of unknown model parameters is even, equal 

weights are placed by the optimal design on each 

zero of the polynomial of Jacobi. Also, when the 

number of unknown model parameters is odd, the 

technique and illustrations on the constructions of 

optimal designs and weights are presented [5]. 
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Certain logistic regression models with quadratic 

terms and varying sample sizes were studied by [4] 

for the derivation of D-optimal designs. The 

performances of the designs as regards maximum 

likelihood estimation of model parameters, as well 

as the estimation of optimum response function were 

examined using various sample sizes and compared 

with some non-optimal designs. The asymptotic and 

small sample distributions of the maximum 

likelihood estimator were observed to be 

inconsistent. Evaluations of the designs were 

examined depending on the level to which they 

suffered from the problem of absence of maximum 

likelihood estimator. The various designs were 

compared for the probability of the presence of 

maximum likelihood estimate. Absence of 

maximum likelihood estimate has been established 

as a difficulty in estimating quadratic logistic model. 

[6] investigated Poisson regression models 

containing three binary predictor variables. 

Application of the models was considered on rule-

based problems in educational and psychological 

testing. Locally D-optimal designs were generated to 

provide efficient estimation for the parameters of the 

models. For the active models, eight out of seventy 

saturated designs were shown to exhibit local D-

optimality. The classical fractional factorial designs 

which are two additional saturated designs exhibited 

local-D-optimality for vanishing effects. 

Ordered categorical responses and cumulative link 

models were studied by [13] for the generation of D-

optimal designs. The conditions that are essential, as 

well as adequate for a design allocation to be locally 

D-optimal were derived for a predetermined set of 

design points and algorithms that are efficient in 

constructing approximate and exact designs were 

developed. The dependence of the quantity of design 

points in a design that is minimally supported on the 

number of predictors that can be much less than the 

number of parameters in the model was established. 

Non-uniformity in the allocation of a minimally D-

optimal design on its support points was established.   

Solutions in an obvious, succinct and effective 

manner are aided through a properly planned 

experiment. Additional information to simple plots 

is usually needed for the initial analysis in revealing 

the nature of dependence of responses on design 

factors. Parameters dependence can be demonstrated 

through the estimation of parameters via least 

squares method. Good experiments are expected to 

produce results of estimated parameters with 

minimum variances and covariances. Functions of 

variances are minimized by optimally designing 

experiments, thereby aiding provision of reasonable 

parameter estimates and predictions of responses [1]. 

Optimal experimental designs play vital roles in 

several fields of applications. For instance, it can be 

widely applied when conducting research in 

medicine, biology, agriculture and industries. 

Generation of optimal experimental designs is 

model-dependent and optimization process involves 

the Fisher information matrix. For example, when 

examining a compound in dose-response studies, 

good knowledge, in addition with proper 

characterization of dose linked with its reaction is a 

major step to be considered because poor knowledge 

about the dose response record can have an 

undeviating effect when estimating the chosen level 

of dose.  

In the case of drug development setting, choosing a 

very high quantity of dose may lead into intolerable 

toxicity and harmfulness while selecting too little 

quantity of dose can reduce the possibility of having 

effectiveness in the confirmatory stage, this can 

therefore reduce the possibility of obtaining 

endorsement and approval for the drug from the 

regulatory body. Different levels of penalties exist 

for choosing an incorrect dose level when a new 

compound is to be developed. 

The Poisson regression model has a basic 

assumption - the distribution of the response variable 

follows a Poisson distribution and the expectation of 

the response variable can be linearly molded with 

the unknown coefficients through logarithmic 

transformation. 

Poisson regression models are nonlinear in nature; 

they fit in the set of generalized linear models. The 

log link function describes the linear relationship 

between the mean response and the predictors. 

This study considers the construction of D-optimal 

designs for Quadratic and Cubic Poisson regression 

models in one variable.  

The paper is organized as follows. The introduction 

is presented in section 1 where the aim, scope and 

literature review are discussed. Materials and 

methods are presented in the second section which 

contains the Poisson regression model and the 

procedures for the construction of D-optimal designs 

are discussed. Section 3 presents the results and 

discussions while the conclusion is presented in 

section 4. 

 

2. MATERIALS AND METHODS 

 

2.1 Poisson Regression Model 

Generally, the Poisson regression model can be 

written as equation (1) 

 𝑦𝑖𝑗  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇𝑖)                                             (1) 

The mean response, 𝜇𝑖, can be expressed as equation 

(2) 

 

 𝜇𝑖   =  𝑒𝑥𝑝(𝑋𝑖
′ 𝛽)                                                (2) 

where, 

 𝑦𝑖𝑗 are the response variables, 

https://en.wikipedia.org/wiki/Generalized_linear_model
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 𝜇𝑖 is the expectation of the response variable at the 

ith design point, 

𝑋𝑖
′ is the design matrix containing factors, 𝑋𝑖, (i = 1, 

2, …), and 

 𝛽 is a vector of parameters. 

This research is aimed at developing D-optimal 

experimental designs for the Polynomial Poisson 

regression models in equations (3) and (4) 

respectively.  

 

 𝜇𝑖  =  𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2)                      (3) 

 𝜇𝑖  =  𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝛽3𝑥𝑖

3)     (4) 

 

A general assumption for a Poisson regression 

model is that the response variables are nonnegative. 

An approximate or a near-optimal design, 𝜉 ∈  𝛯, in 

design space, χ, containing definite design points is 

denoted by equation (5)  

 

𝜉 = {
𝑥1,  𝑥2, ⋯ , 𝑥𝑠

𝑤1, 𝑤2,⋯ ,𝑤𝑠
}                                  (5) 

where, 

 𝑥𝑖 ∈ χ (are the design points), 

 𝞆 is a compact subset of real numbers, and  

𝑤𝑖 are the weights of the design at each design point 

satisfying 0 <  𝑤𝑖  ≤ 1 and ∑ 𝑤𝑖
𝑠
𝑖=1 = 1. 

2.2 Construction of D-optimal Designs 

The D-optimum design searches for the 

maximization of the determinant of the Fisher 

information matrix or equivalently searches for the 

minimization of the determinant of the inverse of the 

Fisher information matrix. Mathematically, if the 

dimension of 𝛽 is 𝑝 × 1, the Fisher information 

matrix, I(𝑋, 𝛽) is a 𝑝 × 𝑝 matrix denoted in  (6) 

 

    𝐼 (Х, 𝛽) =  − 𝐸 [
𝜕2 log(𝐿(Х,𝛽))

𝜕𝛽𝜕𝛽′ ]                       (6) 

where, 

 

 (𝐿(Х, 𝛽) is the likelihood function of the data, and 

 X, is the design matrix. 

The general D-optimal criterion searches for the 

minimization of the generalized variance of β̂, 

equivqlently maximizing the determinant of the 

Fisher information matrix. 

The commonly used D-optimal criterion is defined 

by (7) 

 

max
𝑋∈𝒟

𝑑𝑒𝑡 [
I (Х,𝛽)

𝑛
],                                                   (7)  

 

where, 

 n is the total sample size, and  

𝓓 is the set of all possible designs.  

Since n is usually fixed, the D-optimal design is 

obtained by maximizing the determinant of the 

Fisher information matrix in (6). 

The information matrix is specifically defined in 

terms of a design measure as M(𝜉;  β). 

D-optimal= min[(|(X'X)|)−1] or max[|(X'X)|]. 

 

Considering the model in (3), 

 

𝑙𝑛 𝜇𝑖 = 𝜂𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2                     (8) 

 

Here,  

 𝑓′ (𝑥𝑖) = (1, 𝑥i,          𝑥𝑖
2)                           (9) 

 

where, 

 𝑓′(𝑥𝑖) is the ith row of X, a known function of 

predictor variables. 

The element of the Fisher information matrix 

obtained is expressed in (10) 

 M =  X′X = [

1 𝑥𝑖 𝑥𝑖
2

𝑥𝑖 𝑥𝑖
2 𝑥𝑖

3

𝑥𝑖
2 𝑥𝑖

3 𝑥𝑖
4

]                               (10) 

and the information matrix in terms of a saturated 

design is presented in equation (11) 

 

   M(𝜉; β0, β1, β2)

=    

[
 
 
 
 
 
 
 
 

∑𝑤𝑖𝜇𝑖

3

𝑖=1

∑𝑤𝑖𝜇𝑖

3

𝑖=1

𝑥𝑖 ∑𝑤𝑖𝜇𝑖

3

𝑖=1

𝑥𝑖
2

∑𝑤𝑖𝜇𝑖

3

𝑖=1

𝑥𝑖 ∑𝑤𝑖𝜇𝑖

3

𝑖=1

𝑥𝑖
2 ∑𝑤𝑖𝜇𝑖𝑥𝑖

3

3

𝑖=1

∑𝑤𝑖𝜇𝑖

3

𝑖=1

𝑥𝑖
2 ∑𝑤𝑖𝜇𝑖𝑥𝑖

3

3

𝑖=1

∑𝑤𝑖𝜇𝑖𝑥𝑖
4

3

𝑖=1 ]
 
 
 
 
 
 
 
 

       

 (11) 

 

The D-optimal design maximizes M(𝜉; β0, β1, β2) 

of (11). 

The Fisher information matrix can be expressed in 

compact form as equation (12) 

 

 M(𝜉; β0, β1, β2) =  ∑ 𝑤𝑖𝜇𝑖𝑓(𝑥𝑖) 𝑓
′(𝑥𝑖)               (12) 

 

and more compactly, as equation (13) 
 

  M(𝜉; β0, β1, β2)  =  𝑋′𝑊𝑋                       (13) 
 

 where, 

 𝑤𝑖 represent the weights of the support points, 

𝜇𝑖 = exp (𝜂𝑖), is the mean response of the ith design 

point,  

 𝜉 is the design measure, and 

 

𝑊 = 𝑑𝑖𝑎𝑔{𝑤𝑖 𝜇𝑖} , and 

𝑋 = [𝑓(𝑥i), 𝑓( 𝑥𝑖
2)] . 

 

Considering the cubic Poisson regression model, the 

information matrix for the model in equation (4) is 

obtained as equation (14) 
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M(𝜉; β0, β1, β2, β3)

=    

[
 
 
 
 
 
 
 
 
 
 
 

∑𝑤𝑖𝜇𝑖

4

𝑖=1

∑𝑤𝑖𝜇𝑖

4

𝑖=1

𝑥𝑖 ∑𝑤𝑖𝜇𝑖

4

𝑖=1

𝑥𝑖
2 ∑ 𝑤𝑖𝜇𝑖

4

𝑖=1

𝑥𝑖
3

∑ 𝑤𝑖𝜇𝑖

4

𝑖=1

𝑥𝑖 ∑ 𝑤𝑖𝜇𝑖

4

𝑖=1

𝑥𝑖
2 ∑𝑤𝑖𝜇𝑖𝑥𝑖

3

4

𝑖=1

∑ 𝑤𝑖𝜇𝑖

4

𝑖=1

𝑥𝑖
4

∑𝑤𝑖𝜇𝑖

4

𝑖=1

𝑥𝑖
2 ∑𝑤𝑖𝜇𝑖𝑥𝑖

3

4

𝑖=1

∑𝑤𝑖𝜇𝑖𝑥𝑖
4

4

𝑖=1

∑ 𝑤𝑖𝜇𝑖𝑥𝑖
5

4

𝑖=1

∑𝑤𝑖𝜇𝑖

4

𝑖=1

𝑥𝑖
3 ∑𝑤𝑖𝜇𝑖𝑥𝑖

4

4

𝑖=1

∑𝑤𝑖𝜇𝑖𝑥𝑖
5

4

𝑖=1

∑ 𝑤𝑖𝜇𝑖𝑥𝑖
6

4

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 

 

 (14) 

 

The D-optimal design for (4) is the function that 

satisfies equation (15) 

  | M(𝜉∗;  β0, β1, β2, β3)|
=   max

𝜉∈𝛯
|𝑀(𝜉; 𝛽0, 𝛽1, 𝛽2, β3)|                           (15)     

 

3. RESULTS AND DISCUSSION 

 

3.1 D-optimal Designs for Quadratic Poisson 

Regression Model 

The result of D-optimal designs relating to the 

Poisson regression model with one predictor 

variable involving a quadratic term is hereby 

presented. For the model in (3), the assumption is 

that  

 

𝑥𝑖  ∈   [0, 1] (𝑖 = 1,⋯ , 𝑝 + 1), and 

 𝛽 = (1, 2, 1)𝑇. 

 

The D-optimal design relating to the model is 

therefore constructed as (16)  

 

 𝜉𝐷
∗ = {

(0.000)          (0.4142)         (1.0000)

         
1

3
                       

1

3
                        

1

3
         

}     (16) 

 

Considering this model, the design is found to be 

optimal at 3-design points. After 1000 iterations, the 

optimal design points are 𝑥 = 0.0000 , 𝑥 = 0.4142 

and 𝑥 = 1.0000 with each generated design weight 

of   
1

3
 . 

 

This implies that 33.33% of the total experimental 

runs are allocated to each optimal design point. The 

maximum sensitivity function for this model is 

1.081764e-08, which confirms that the design is 

indeed D-optimal at 3-design points. 

Figure 1 in the appendix shows the D-criterion value 

for the quadratic Poisson regression model. The 

positive criterion value corroborates the choice of 

the restricted design space. 

 

3.2 D-optimal Designs for Cubic Poisson 

Regression Model 

The result of D-optimal designs relating to Cubic 

Poisson regression model with one predictor 

variable is hereby presented. Considering the model 

in equation (4), suppose 𝑥𝑖  ∈   [0, 1] (𝑖 = 1,⋯ , 𝑝 +
1), and 𝛽 = (1, 2, 2, 1)𝑇; the D-optimal design 

for the model is constructed and expressed in 

equation (17)  
 

 𝜉𝐷
∗

= {

(0.000)    (0.2204)    (0.6596)    (1.0000)

      
1

4
                

1

 4
                   

1

4
               

1

4
         

}   (17)  

 

For a Poisson regression model involving cubic 

polynomial term in the predictor variable, the design 

is optimal at 4-design points. After 1000 iterations, 

optimal design points: 𝑥 = 0.0000 , 𝑥 = 0.2204,  

𝑥 = 0.6596  and 𝑥 = 1.0000 were obtained. Each 

of the optimal design points has equal optimal 

design weight of  
1

4
. 

This implies that 25% of the total experimental runs 

are allocated to each optimal design point. 

The maximum sensitivity function for the model is 

2.320493e-07, which confirms the D-optimality of 

the design. 

 

CONCLUSION 

 

This research investigates and constructs D-optimal 

experimental designs for Poisson regression models 

containing quadratic and cubic terms in one variable. 

In the case of the quadratic Poisson regression 

model, it can be seen that the design is optimal at 3-

design points with generated equal weights of 

0.3333; the cubic Poisson regression model is 

optimal at 4-design points with generated equal 

weights of 0.25. This implies that equal proportional 

allocation of treatments is allotted to each of the 

constructed D-optimal design point with respect to 

the orders of polynomial in the Poisson regression 

models. 
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Appendix 

 
Figure 1: D-optimal Designs for a Quadratic Poisson 

Regression Model in One Variable 

 

 


