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ABSTRACT: The dynamics of research in terms of well-defined study design, interwoven plots/sampling frames, research 

stages, sample proportions in each plot, nature of output(s) and sample size for different designs can be extensively studied 

using the theory of mutual information. Owing to the fact that outcomes in multi-dimensional contingency platform are 

frequentist in nature and as such the usual analysis of variance is not practicable; there is need to develop a sound 

mathematical techniques for entropy's $H(.)$ significance among interacting vectors whose subsets are discrete and are 

interwoven into plots in a categorical set up. This study partitions the mutual information algebraic structures via the 

squared radial function of the exponential power distribution into sum of single and joint entropy's shared contributions in 

analogy to the analysis of variance sum of squares partitions. We present evidence-based test of entropy significance in few 

statistical designs with application.  

KEYWORDS: Discrete multi-dimensional design, mutual information, covariance matrix, algebraic structure, entropy 

significance 

 
 

1. INTRODUCTION 

 

Analysis of variance and covariances are important 

decision-making tools that are commonly used in 

research and in any discipline where statistical 

decision theory is the bed-rock of empirical 

evidence. Unfortunately, despite the popularity of 

analysis of variance (ANOVA), its restriction to data 

on the continuous scale is a major drawback that 

must be addressed. Hence, we developed a technique 

that will be useful in hypothesis testing of data that 

are best captured on a nominal/ordinal scale via 

categorical set up. The interactions among the 

discretized variable(s), which resulted into several 

interwoven plots, are jointly combined into a multi-

dimensional categorical set up. The joint probability 

outcome across several plots within the entire 

categorical set up are presented in frequency form as 

the number of samples within each plot [22, 24]. 

Extending the approach to several dependent 

vectors, the measure of dependence among vector's 

and its test of significance, across the entire multi-

dimensional categorical outline, for every single and 

joint vector were obtained using mutual information 

approach; which generalizes the entropy measure. 

Thus, this study established the mutual information 

measures (entropy significance) of the relationship 

among several dependent but discrete vectors 

arranged into one- and two-way statistical design, 

but follows multivariate exponential power 

distribution density. Unlike [7] that used generalized 

likelihood ratio of several independent log-linear 

models to capture the same relationship. On the 

other hand, despite the importance of sample size in 

research, many of the sample size estimations in 

literature are not without gaps that only sound 

statistical theories can fill. Those gaps include not 

able to accommodate researchers subjective 

reasoning in design to effect research dynamism [8], 

usage of arbitrary participants to variable ratio for 

soft landing on sample size [10], assumption of 

unrealistic limiting theorem in sample size 

calculation; most especially when a more practical 

distribution was not employed in obtaining the 

limiting theorem [15], and so on. So, in order to 

address the issues, ANOVA impracticability and 

provision of sample size that is design dependent, 

first we established the mutual information 

analogous of analysis of variance (ANOVA), then 

extends its usefulness, via a more practical 

distribution that generalized normal and many other 

distributions, to the estimation of sample size in 

some statistical designs; while creating an opening 

to extend the technique to sample size in more 

complex designs. 

According to [11], the random variable rv X is 

univariate exponential power distributed (EPD) if 
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Where   is the shape parameter, and   are 

location and scale parameter.  Also, its multivariate 

extension for 1 2[ , ..., ]pX X X  in the absolute 

continuous case has the density 
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 with 

covariance   [5, 20]. Note that the squared radial 

function which is the exponent in (1.2) is dependent 

on the varying in-built shape parameter   within 

the density generator function 
ph [2, 3, 5,]  

1 2( ) ( ) ~ ( )T ps X X h −= −  − ∣ ∣ 1.3 

However, by varying   in (1.3), the square radial 

function of the various members of the EPD will be 

obtained. The squared radial function obtained when 

1 =  is our focus in this study. 

On the other hand, employing the survival function 

approach to obtaining discrete probability model 

[23], the discretized cdf and pdf for (1.1) can be 

obtained as 

( ) ln
x xq q

F x
p p

 
   

= −   
   

1.4 

and 

( 1) ln ln
( ) ( ) 1 ,

ln ln

0,1,2,..,0 ( , ) 1.

x q p
f x F x q

x q p

x p q
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.Proof Substituting 
1ln p





−= and ln xx
q



−=  into 

the series representation of the cdf of (1.1) , we have 

(1.4) . Evaluating ( ) ( 1) ( )f x F x F x= + − we have 

(1.5) .  

From (1.5) , evaluating the expression 
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f x f x
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F x F x
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 , we obtained the 

univariate entropy measure for discretized EPD over 

x  as  
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The multivariate discretized EPD is thus expected to 

generalize the entropy measure (1.6)  via mutual 

information approach. Next we established the 

relationship between the covariance structure (1.3) 

in continuous case and the mutual information 

measure of the entropy (1.6)  in discrete case. 

 

2.  RELATING MULTIVARIATE MUTUAL 

INFORMATION (MMI) AND 

COVARIANCE STRUCTURES OF 

𝒑𝒕𝒉VECTORS 

 

2.1.  Algebraic model structure of MMI.  
Definition 1: The mutual information (MI) between 

two random vectors ( )rv s X and Y is 

( ) ( ) ( ) ( )I X,Y H X H Y H X,Y= + −               2.1 

Definition 2: [21] The MMI of three ( )rv s X,Y,Z is 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

I X,Y, Z H X H Y H Z H X,Y

H X, Z H Y, Z H X,Y, Z

= + + −

− − +
 2.2 

Definition 3: The conditional multivariate mutual 

information (CMMI) [2, 21] for dependent vectors is  

( ) ( ) ( )1 1 1 1 1 1I X ,..,X | X I X ,..,X I X ,.,X ,Xp p p p p− − −= −  2.3 

Implying that for one input (X) and one output (Y) 

we have  

( ) ( ) ( ) ( ) ( )I X | Y I X I X,Y H X,Y H Y= − = −

while two inputs and one output MI has the structure 

( ) ( ) ( ) ( ) ( )I X,Y | Z H X, Z H Y, Z H Z H X,Y, Z= + − − . 

Definition 4: The MMI structure for two inputs and 

two outputs is [6, 13, 21]  

( ) ( ) ( )

( ) ( )

I X,Y | Z,A H X, Z,A H Y, Z,A

H Z,A H X,Y, Z,A

= +

− −
2.4 

 
2.2. Relationship between Covariance matrix and 

MMI 

Definition 5: Given two random vectors ( ),X Y , the 

covariance matrix   is given as 
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xx xy

xy yy

  
 =  

  
 Likewise the MI structure for 

vectors ( ),X Y  from definition (1) can be expressed 

in matrix form as  
1

( ) ( , )
2

( , )

1
( ) ( , )

2

exp 0
exp .

0 exp

H X H X Y

I X Y

H Y H X Y

−

−

 
 

=  
 
 

 

 

Definition 6: Given three random vectors (𝑋, 𝑌, 𝑍), 
the covariance matrix   is given as 

 ,

xx xy xz

xy yy yz

xz yz zz

   
 

 =    
    

 while its corresponding 

MMI matrix structure from definition (2) is 
1

( ) ( , ) ( , , )
3

1
( ) ( , ) ( , , )

( , , ) 3

1
( ) ( , ) ( , , )

3

exp 0 0

0 exp 0 .

0 0 exp
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− +
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 Hence following the univariate  

21
( ) ln(1 )

2
I X = − − [14] and the multivariate 

1 2

1 1
( , ,.., ) ln ln

2
nI X X X A D



  
=  + +  

  
  

[18] dependence model between mutual information 

and covariance structure which considers correlation 

as a measure of linear dependence, we derived the 

linear relationship between MMI and covariance 

structure has [2, 3, 14]  
1 2( , ..., )

exp .pI X X X
                                      2.5 

Substituting (2.5) into (1.3), we expressed the 

squared radial function of the EPD for 
thp  vectors 

1 2( , ,., )pX X X X=  in terms of MMI entropy's as 

( ) 2

1 2( )exp , ,..., ( ) ~ ( ).p

ps X I X X X X h


  = − − −      2.6 

So for multivariate normally distributed pth vectors 

( )1 =  we have 

( ) 2

1 2( )exp , ,., ( ) ~ .p ps X I X X X X   = − − −     2.7 

 

3. SAMPLE SIZE ESTIMATION IN 

DISCRETE STATISTICAL DESIGN 

 

Supposing the values from every vector 

1 2, ,..., pX X X  are interwoven to map out an area 

that is common to all the vectors 

1 2 .,.,. pX X X   , then any point within the 

mapped area has coordinate values from each vector. 

If the point is the means coordinate X , then its 

confidence interval for the parameter estimates   

from (2.7) can be obtained as 

1 2 1 2( , ,..., ) ( , ,..., )2 2

1 1
, ,

2 2

1 .p pI X X X I X X X

p p
Pr X e X e    − +

 
−   + = −  

 

 3.1 

See [9] for the proof. (3.1) implies that the 

interwoven vectors discrete points that form the 

individual plots/ sampling frames within the entire 

multi-dimensional contingency platform are 

distributed around a location parameter   and 

confined within a probability confidence interval of 

( )( )2

1 2( )exp , ,..., ( ) 1 .p pPr X I X X X X    − − −  = − 

 However, note that in a multi-dimensional 

contingency table, the sample size ( )n  is the total 

sum of the relative frequency ( )rf  across all 

interwoven plots 1rn f= = ; hence the sample 

size ( )n  required to carry out a research study 

where the variable (treatments/interventions/vectors 

/causes/pattern/effects and so on) are jointly 

interacting and simultaneously influencing each 

other within the multi-dimensional contingency 

platform can be derived as  
1 2( , ,..., )2

,
.

| ( ) ( ) |

pI X X X

p

T

e
n

X X



 
=

− −
                               3.2 

Proof. See [17] for details. Recall that the sample 

size ( )n  for the univariate case ( )1p =  of EPD is 

given as 
1 2
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Or 

2

( )
2

2

2

[ 1]
, 1,

| |

Z Z

e
n

X

 

 


+

−
= 

−
                             3.4 

where   and   are as earlier defined, x  is the 

univariate sample means or its multivariate means 

coordinate X , 

2

Z  and Z  are the standard normal 

values at specified level of significance   and 

power (1 )−  respectively, then considering (2.5), 

(3.3), (3.4) and noting that 
2  is equivalent to   in 

the multivariate case while the square of  ' 'thp rv z  

is 
2

,p   distributed, then the sample size for the 

discrete version EPD in a multi-dimensional 

contingency experiment represented as  
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can be expressed as (3.2). Note: In practice, the 

reference sample point co-ordinate may be taken 

from previous studies or estimated, since the true 

mean co-ordinate is usually unknown.  

 

4. ANALOGY BETWEEN SUM OF 

SQUARES IN CONTINUOUS CASE AND 

SUM OF ENTROPY'S IN DISCRETE 

CASE 

 

Taking the natural logarithm of (2.7); we obtain the 

sums of each entropy components in the MMI 

algebraic structure in analogy to the sum of squares 

in continuous case analysis of variance (ANOVA) as 
2 1

1 2| [ , ,....., ] |~ ln[( ) ( ) ( )]T

p pI X X X X X  −− −       4.1 

Note: (4.1) showed that, the algebraic sum of 

entropies is the logarithm of the ratio of two chi 

square. Recall that ratio of two s  is Fisher-

distributed. So from (4.1), provided 0 b aI I −    

since MI  must be non-negative; then we deduced 

that the distribution of MMI difference | |b aI I−  is 

analogically similar to the F -distribution for the 

right hand index (4.1)  ratio ~ 1
Regression

error

MS
F

MS
  

usually used in ANOVA. Hence, the MMI algebraic 

structure has the distribution  

( )exp | | ~ 0 1.b aI I F− −                                4.2 

which is the inverse of existing F - distribution. 

Note that (4.2)  also follows from the discretization 

of the continuous Fisher ( , )
2 2

m n
 distribution via the 

series expansion of its incomplete beta cdf. Next, we 

discuss the MMI algebraic structure of few statistical 

designs to demonstrate the usefulness of entropy 

significance and ascertain its level of dependency 

(odds ratio).  

 

5. STATISTICAL DESIGNS 

 

5.1.  One-way MI design 

In this case, we have a single treatment random 

variable X (p=1) which could be in various subsets; 

that is partitioned into two or more categories of 

treatment effects 1 2[ , ,....., ]zX X X X=  such that 

each categories has its own level of measurement or 

factor levels for example  

   

 
1 2X X 1,1 ,X 1,2,3 ,..

.,X Low,Medium,High,Severez

= −
.  

Supposing Y is the outcomes across all the X's 

treatment effects then the one-way design has the MI 

structure ( , )I X Y . For single trial ( ) 0H Y = , the 

conditional MI is ( | ) ( ) ( , )I X Y H X H X Y= −  

while for multiple outcomes the MI is 

( , ) ( ) ( ) ( , )I X Y H X H Y H X Y= + − . Example is 

set of psychiatric instruments with different scales 

aimed at screening patients for psychosis. While the 

continous case one-way ANOVA answers the 

hypotheses: average screening effectiveness across 

the instruments (treatments) are the same or not, the 

MI approach, answers the hypothesis : the entropy of 

agreement on effectiveness among the instruments 

are the same all through or not; that is 

: ( | ) 0oH I X Y =  and : ( | ) 0aH I X Y   while for 

multiple trials we have : ( | ) 0oH I X Y =  and 

: ( , ) 0aH I X Y  . The entropy that accounted for 

the significance in the alternative hypothesis will 

then be determined via MI analysis of entropy 

significance in analogous to the ANOVA [1, 4]. The 

preliminary research design structure on how 

treatments are arranged into plots is given as   

(

 
 

𝑥 𝑦 . . . 𝑧
−1 1 . . . 𝐿𝑜𝑤
1 2 . . . 𝑀𝑒𝑑𝑖𝑢𝑚
. . . 3 . . . 𝐻𝑖𝑔ℎ
. . . . . . . . . 𝑆𝑒𝑣𝑒𝑟𝑒 )

 
 

 

making the least preliminary number of plots in the 

design to have a row matrix [2,3,...4]X  = .  

 

Table 1: One-way MI design analysis without 

replication 
source Estimat

e (I) 

Df 
trt errorI I−

 

calF

 
, ,

1

, I Itrt error
tab dfF



−

 

( )H X  

( )

( )

,H X Y

H X−
 

( ),H X Y

 

trtI  

 

 

errorI  

 

 

totalI  

r 

 

 

 

n-r 

 

 

 

n 

. 

. 

. 

. 

. 

. 

. 

. 

. 

Trt : Treatment 

 

5.2. Two-way MMI design 

In this case, we have two treatment random variables 

[X,Y] (p=2) where each X and Y are vectors 

separately partitioned into categories such that each 

category has various factor levels say for instance 
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     

     
1 2

1 2

X x 1,1 , x 1,2,3 ,.x Low,Medium,High,Severe  

and Y y 0,1,2 , y 1,1 ,.., 1,2,3,4,5  

c

ry

= −

= −
. 

So the design matrix is a rectangular or square array 

of interacting input vectors (X,Y) with variable 

output Z and thus has the MI structure ( , , )I X Y Z . 

The conditional MI for two inputs given an output is 

( , | ) ( , ) ( , ) ( ) ( , , )I X Y Z H X Z H Y Z H Z H X Y Z= + − −  

where for single trial ( ) 0H Z = . Example is 

investigating the effect of specific drug therapy 

dosages (factor X) and occupational therapy 

interventions (Factor Y) among patients with third 

psychiatric episodes in-terms of length of stay on 

admission as output (Z). The aim is to determine if 

drug therapy, occupational therapy and its 

interactions has the same or significantly different 

entropy's contributory effect ( )0(H : I X,Y | Z 0=  

and : ( , | ) 0)aH I X Y Z  [4, 9]. The matrix of how 

treatments are arranged to interact with each other 

and the number of interwoven plots available in the 

design is the Cartesian products of interacting 

categories given as 

 

1 2

1

2

[ 1,1] [1,2,3] ... [ , , , ]

[0,1, 2] 6 9 ... 12

[ 1,1] 4 6 ... 8

.. . . ... .

.. . . .. .

.. . ... .

[1, 2,3, 4,5] 10 15 .. 20

c

r

x x x Low Medium High Severe

y

y

y

− 
 
 
 −
 
 
 
 
 
 
 

 

Next, we proceed to determine the entropy that 

accounted for the significance of the alternative 

hypothesis. 

 

Table 2: Two-way MI design analysis without 

replication 

Trt : Treatment. 

 

Note that the MMI algebraic structure of three 

interacting vectors given the output variable A is 

( , , | ) ( , ) ( , ) ( , ) ( , , )

( , , ) ( , , ) ( , , , )

I X Y Z A H X A H Y A H Z A H X Z A

H X Y A H Y Z A H X Y Z A

= + + −

− − +
. 

The MMI for other research designs, like 
kr  

factorial designs, split plots, multivariate output 

designs and so on, can be obtained in a similar 

fashion. 

6. APPLICATION 

 

6.1. Sample Size Estimation.  

In this case, assumptions may be taken such that the 

number of plots in each interwoven categories are 

assumed to follow a known probability distribution. 

We demonstrate application using examples. 

Example 1: What is the sample size required to carry 

out an experiment on the effectiveness of some 

selected psychiatric screening instruments with least 

preliminary design matrix  

[2,3, 4]X  = when ( ,1 ) 0.9 − = . 

Solution: First we assume the uniform distribution 

and secondly the poisson distribution; so we obtain 

the probability values across plots 

( ) [1/ 3,1/ 3,1/ 3]p X  =  and ( ) [4 /11,4 /11,3 /11]p X  =  

respectively. The sample size (assuming unit 

deviation) is thus 
2

ln1/3

[arctan(1.64 1.28)]
15163.678 0 1

exp
n for 

+
= =    

and 

(1.64 1.28) 2

ln1/3

[exp 1]
923.09 1

exp
n for 

+ −
= =   . On 

the other hand for the poisson distribution the 

sample size is 15034.547n =  and 915.23n =  for 

0 1   and 1   respectively. 

 Example 2: Supposing the least number of plots in 

each sampling frame generated from the interactions 

of two vectors (X,Y) is given by the array 

1 2 3

1

2

3

6 9 12
.

4 6 8

10 15 20

x x x

y

y

y

 
 
 
 
 
 

 Calculate the sample size to 

carry out a study design with above description at 

0.95 =  and 1 0.9− =  assuming unit deviation.  

Solution: For assumed uniform and poisson 

distributions we obtain 

1 2 3

1

2

3

1 2 3

1

2

3

1/ 9 1/ 9 1/ 9
( ) ;

1/ 9 1/ 9 1/ 9

1/ 9 1/ 9 1/ 9

0.1 0.2 0.145
( ) .

0.03 0.1 0.172

0.2 0.05 0.03

x x x

y
p X and

y

y

x x x

y
p X

y

y

 
 
  =
 
 
 

 
 
  =
 
 
 

  

The sample size is  

0 1 5306.77 6037.58 .

1 601.90 684.79

Uniform Poisson

n 



 
 

=   
  

 

source Estimate 
(I) 

Df 
trt errorI I−  calF  

, ,

1

, I Itrt error
tab dfF



−
 

H(X,Z) 

 
H(Y,Z) 

 

H(X,Y,Z)- 
H(X,Z)-H(Y,Z) 

 

H(X,Y,Z) 

1trtI  

2trtI  

errorI  

totalI  

p 

 
q 

 

pq-p-q 
 

pq 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
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6.2. Mutual Information (MI) analysis of entropy 

significance.  

Example 3: Supposing the distribution of 

respondents screened for anxiety (X), depression (Y) 

and general health status (Z), is given below. 

Estimate the associations within and among the 

screening scales and obtain its effect. 

 

Table 3: Distribution of respondents screened for 

Depression, Anxiety and GHQ [18] 
X Z Y−  Y+  Total 

𝑋− 𝐺𝐻𝑄 < 5 37 

32 

8 

13 

45 

45 

𝑋+ 𝐺𝐻𝑄 ≥ 5 2 

10 

3 

21 

5 

31 

 Total 81 45 126 

 

Table 4: Three-way MMI design Analysis of entropy 

Significance 
source Estimate 

(I) 

df 
trt errorI I−  calF  

, ,

1

, I Itrt error
tab dfF



−
 

-H(X,A) 

 
-H(Y,A) 

 

-H(Z,A) 
 

H(X,Y,A) 

 
H(X,Z,A) 

 

H(Y,Z,A) 
 

I(X,Y,Z|A) 

 
H(X,Y,Z,A) 

-0.68829 

 
-0.501195 

 

-0.256426 
 

1.004612 

 
0.90356 

 

0.742952 
 

2.425115 

 
1.2199 

2 

 
2 

 

2 
 

4 

 
4 

 

4 
 

6 

 
8 

3.113407 

 
2.92631  

 

2.681541   
 

1.420503 

 
1.52155    

 

1.682163    
 

0 

 
1.205215 

 0.0444  

 
0.05359 

 

0.068 
 

0.24159 

 
0.21837 

 

0.18597 
 

 

 
0.29966 

 0.19455 

 
0.19455 

 

0.19455 
 

0.22075 

 
0.22075 

 

0.22075 
 

0.233645 

 
0.240964 

 

Critical region: 𝐹𝑐𝑎𝑙 < 𝐹𝑡𝑎𝑏,𝑑𝑓𝐼𝑡𝑟𝑡,𝐼𝑒𝑟𝑟𝑜𝑟,𝛼
−1 . 

 

Interpretation: Each of the instruments are 

independently significant alongside its joint 

associations p value −   except the association 

between Depression and Anxiety. The odd ratio 

effect of having GHQ induced anxiety is 1.174 times 

higher than that of GHQ induced depression with 

21.8% 18.6%and  of the respondents presently 

showing signs of GHQ induced anxiety and GHQ 

induced depression respectively. 

 

Example 4: What is the level of 

dependence/association between current and 

previous religious Identification [1] in the table 

below 

 

Table 5: 
 Y(CRI) Protestant Catholic Jewish Others Total 

X(PRI) Protestant 

Catholic 

Jewish 

Others 

Total 

918 

30 

1 

29 

978 

27 

351 

1 

5 

384 

1 

0 

28 

0 

29 

70 

37 

1 

25 

133 

1016 

418 

31 

59 

1524 

 

Solution:  

Table 6: MI Analysis of Entropy Significance 
source Estimate 

(I) 

df 
trt errorI I−  calF  

, ,

1

, I Itrt error
tab dfF



−  

H(X,Z) 
 

H(Y,Z) 

 
H(X,Y)-

H(X)-H(Y) 

 
H(X,Y,Z) 

0.830233 

0.9196 

-0.46575 

1.28408 

4 
 

 

4 
 

8 

 
 

16 

1.29598  

1.385343 

0 

 

 
1.749829 

0.273629  

0.250238 

1  

0.173804  

0.26042  

0.26042  

0.290698  

0.31056  

 

Significant if 𝐹𝑐𝑎𝑙 < 𝐹𝑡𝑎𝑏,𝑑𝑓𝐼𝑡𝑟𝑡,𝐼𝑒𝑟𝑟𝑜𝑟,𝛼
−1  

 

Interpretation: The joint entropy and the entropy due 

to CRI are significant at 0.05 = . Implying that 

the entropy between CRI and PRI are signicantly 

different at 0.05 =  and so has a level of 

dependence. The result shows that only 5.11%  of 

the respondents have changed their religious 

identification from what it was previously.  

 

6.3. Performance Evaluation of Screening 

Instruments.  

Having established the importance of F-calculated in 

the confirmation of the significance of entropy's in 

mutual information (MI) analysis, we proceed to 

demonstrating its usefulness in the evaluation of 

screening instruments performance based on the 

level of mutual agreement of subjects’ responses 

across all the instruments. Given that F-calculated 

0 1calF   can be used as a single measure of 

performance of the test accuracy for the positive 

class [12], then, from table 4 in example 3, we have 

False Positive (FP) 0.0444= =  while its 

corresponding True Positive (TP) 1 0.9556= − =  

for the anxiety case; others follow suit in the same 

order. So based on this argument, we construct the 

table for the diagnostic classification among the 

three screening instruments using the F-calculated 

values as follow: 

 
Table 7. Sensitivity and Specificity of the screening 

instruments 
True value Instruments Test valuePositive Test valueNegative 

Positive Anxiety  

Depression  

GHQ  

0.9556T P  

0.94641T P  

0.932T P  

0.24159F N  

0.21837F N  

0.18597F N  

Negative Anxiety  

Depression  

GHQ  

0.0444F P  

0.05359F P 

 0.068F P  

0.75841T N  

0.78163T N  

0.8143T N  

TP-True Positive; FP-False Positive; FN-False 

Negative; TN-True Negative 
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Next, we obtain the various measures of instruments 

performance from table 7. See [12, 16] for the 

formula on various measures of classification.  

 
Table 8: Measures of performance among Anxiety, 

Depression and GHQ Instruments 
Measure Anxiety Depression GHQ 

Sensitivity  

Specificity  

Positive Predictive 

Value Negative 

Predictive Value 

Likelihood Ratio 

Positive Likelihood 

Ratio Negative 

Accuracy 

F-score 

Area Under Curve  

Youdens Index  

Discriminant Power  

83.71 

 94..83  

95.56  

81.43  

16.19  

0.1718  

88.5  

89.24  

89.27  

0.7854 

2.506  

81.25  

93.58  

94.64  

78.16  

12.66  

0.2  

86.40  

87.44  

87.42  

0.7484 

2.286 

79.41     

91.77      

93.2       

75.84      

9.65    

0.2243   

84.52    

85.76    

85.59  

0.7118  

2.074  

 

CONCLUSIONS 

The major advantage of the theory of MI in research 

designs is its ability to accommodate design 

dynamism in terms of the nature and relationship 

between inputs and output(s) vectors along with the 

various interaction modifications. Though the 

algebraic structure may be complex depending on 

the design under study, the truth however is that the 

structure and its test of entropy's significance is 

achievable. Further research in this area of our 

discussion will open up a future of promising 

professional discipline for statisticians in all facets 

of life where research and development is of 

topmost importance from discrete outcomes. This 

study established the analogical relationship between 

discrete case mutual information (MI) entropy 

significance and continuous case sum of squares 

significance in ANOVA. The level of dependence 

via entropy's significance and its odds effect among 

interacting vectors (variable) were confirmed 

alongside the performance evaluation. 
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